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Plan for Today

1. Bayesian Statistics

◼ prior and a posterior distributions

◼ Bayesian estimation:

 Bayesian Most Probable Estimator (BMP)

 Bayes Estimator

2. Caution!



Bayesian Statistics vs. traditional statistics

Frequentist: unknown parameters are given 

(fixed), observed data are random

Bayesian: observed data are given (fixed), 

parameters are random



Bayesian Statistics

Our knowledge about the unknown 

parameters is described by means of 

probability distributions, and additional 

knowledge may affect our description.

Knowledge:

▪ general

▪ specific

Example: coin toss



Bayesian Model

 X1, ..., Xn come from distribution P , with 

density f (x) – conditional density given a 

specific value of  (likelihood function).

 P – family of probability distributions P , 

indexed by the parameter 

 General knowledge: distribution  over the 

parameter space , given by () – the so-

called prior distribution of , 

 ~ 



Bayesian Model – cont. 

Additional knowledge (specific, contextual): 

based on observation. We have a joint 

distribution of observations and  :

on this basis we can derive the conditional 

distribution of  (given the observed data)

where

is a marginal distribution for the obs.

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜃) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)

𝜋(𝜃|𝑥1, . . . , 𝑥𝑛) =
𝑓(𝑥1, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)

𝑚(𝑥1, . . . , 𝑥𝑛)
,

𝑚(𝑥1, . . . , 𝑥𝑛) = න
Θ

𝑓( 𝑥1, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)𝑑𝜃



Bayesian Model – a posteriori distribution

is called the posterior 

distribution, denoted x

The posterior distribution reflects all 

knowledge: general (initial) and specific 

(based on the observed data). 

Grounds for Bayesian inference and 

modeling

𝜋(𝜃|𝑥1, . . . , 𝑥𝑛)



Prior and posterior distributions: examples

Let X1, ..., Xn be IID r.v. from a 0-1 distr. with 

prob. of success  ; let

for (0,1)

where

and

then the posterior distribution: 

conjugate prior for Bernoulli distr.

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

𝐵(𝛼, 𝛽) = න
0

1

𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢 =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)

Γ(𝛼) = න
0

∞

𝑢𝛼−1 exp( − 𝑢)𝑑𝑢 = (𝛼 − 1)Γ(𝛼 − 1)

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

Beta(,) 

distr with 

mean

= /(+ )



For a Beta (1,1) prior and data: n=10 and 1, 5, 9 successes



For a Beta (1,1) prior and data: n=100 and 10, 50, 90 

successes



For a Beta (10,10) prior and data: n=10 and 1, 5, 9 successes



For a Beta (10,10) prior and data: n=100 and 10, 50, 90 

successes



For a Beta (1,5) prior and data: n=10 and 1, 5, 9 successes



For a Beta (1,5) prior and data: n=100 and 10, 50, 90 

successes



Bayesian Statistics

Based on the Bayes approach, we can

 find estimates

 find an equivalent of confidence intervals

 verify hypotheses

 make predictions



Bayesian Most Probabale (BMP) estimate

Similar to ML estimation: the argument which 

maximizes the posterior distribution:

i.e. 

𝜋( መ𝜃𝐵𝑀𝑃|𝑥1, . . . , 𝑥𝑛) = max𝜃 𝜋 (𝜃|𝑥1, . . . , 𝑥𝑛)

𝐵𝑀𝑃(𝜃) = መ𝜃𝐵𝑀𝑃 = argmax𝜃 𝜋 (𝜃|𝑥1, . . . , 𝑥𝑛)



BMP: example

1. Let X1, ..., Xn be IID r.v. from a Bernoulli distr. with 

prob. of success  ; for (0,1)

We know the posterior distribution: 

we have max for

i.e. for 5 successes in 10 trials for a prior U(0,1) (i.e. Beta(1,1) distr.), we 

have BMP()=5/10 = ½

and for 9 successes in 10 trials for the same prior distr., we have 

BMP( )=9/10

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

Beta(,) distr; the 

mode of this distr

= (-1)/(+ -2)

for >1, >1

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

𝐵𝑀𝑃(𝜃) =
σ𝑖=1
𝑛 𝑥𝑖 + 𝛼 − 1

𝑛 + 𝛽 + 𝛼 − 2



Bayes Estimator

An estimation rule which minimizes the 

posterior expected value of a loss function

This is equivalent to using other (than the 

mode) characteristics of the posterior

distribution to find an estimator:

◼ the mean

◼ the median



Caution!

1. Tests should be designed BEFORE we 

start examining the data

2. The only way to increase power and 

improve significance level simultaneously 

is by collecting more observations 

(frequently not possible if we work on 

existing data). Attn to two populations!

3. Significant p-value does not mean effect is

important/sizeable.

4. P-values in repeated samples



P-values in repeated samples

We examine if a new training has effect. The null hypothesis 

is that the training has no effect, and the alternative 

hypothesis is that it has effect. We use a 5% significance

level for the test.

 A randomly selected school has completed this training, 

and after completion the statistical test returns a P-value 

equal to 4%. 

 25 different schools have completed this training. At one 

of the schools the test returned a P-value of 4%. 



Order of actions

 What is the alternative hypothesis (the one 

we want to prove)?

 What is the null hypothesis (the one we 

want to disprove)?

 Which test statistic should we use?

 When should we reject the null hypothesis?

BEFORE WE START EXAMINING THE 

DATA (preferably before the experiment 

design)



Null and alternative hypotheses: examples

 A firm claims that more than 50% of the population prefer their new 

product. We ask n randomly selected people if they prefer the new 

product and we register X, the number of people in the sample who 

answer yes. We believe that the company may be right, and wish to 

execute a test where it will be possible to conclude that the firm 

probably is right. 

 A firm claims that at most 10% of the customers are dissatisfied with 

the items they have bought from the firm. We ask n randomly 

selected customers if they are dissatisfied and register X, the number 

of customers who are dissatisfied. We believe the firm is mistaken 

and want to execute a test where it is possible to conclude that the 

firm probably is mistaken.



When is the alternative one-sided and when is it 

two-sided?

 We examine whether some special form of 

training leads to improved production. We 

measure production in terms of an unknown 

parameter which increases when production 

improves

 We examine whether some form of new 

security measure affects production.



Attn: Paired vs unpaired

A factory can use two different methods of production. We 

make 10 independent observations of the production, 5 using 

method 1 and 5 using method 2. Method 1 gave the results:

4.7; 3.5; 3.3; 4.2; 3.6;

while the corresponding numbers for method 2 were

3.2; 4.2; 3.3; 3.9; 3.0.

Assuming normality and equality of variances, the t-test for this 

sample is T=0.99 with critical value 2.306.

If we look at the results ordering 5 workers, we have:

4.7; 3.5; 3.3; 4.2; 3.6 and 4.2; 3.2; 3.0; 3.9; 3.3

→ Paired test with different outcome!



Attn: Independence of observations

We observe stock prices of a company, we 

want to verify if there is an increasing trend.

Is it reasonable to assume that observations 

are independent?

We use a transformation 𝑌𝑖 = ln(
𝑋𝑖

𝑋𝑖−1
)

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

100 92 96 117 120 126 149 152 176 196 184

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

-0.083 0.043 0.198 0.025 0.049 0.168 0.02 0.147 0.108 -0.063

Source: Jan Ubøe, Introductory Statistics for Business 

and Economics



Attn: Extremes

 A company has 10 machines, all units produce on 

average m items per day with a standard 

deviation of 5 items.

◼ Assuming normality, the critical value for a 5% 

significance level test for  m=100 against m<100 is 

approximately 92

◼ Assuming normality, and m=100, what is the 

probability that at least one plant produces less than 

92?

◼ What is the critical value for testing that at least one 

out of the ten units produces less than 100 by looking 

at the minimum production value?



Final quiz

https://forms.gle/gaKZgozdGiEjWn768

https://forms.gle/gaKZgozdGiEjWn768

