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1. Hypothesis Testing – Non-parametric tests

The tests discussed in the previous lectures all fell into the category of parametric tests, i.e.
tests where the hypotheses concern the values of the parameters of distributions of random
variables. During this lecture, we will discuss a different category of tests, where parameter
values are not the main topic of interest. This happens for example if we want to check
whether a random variable fits (comes from) a specified distribution (when we will perform so-
called goodness-of-fit tests), when we want to check whether random variables have the same
distribution or when we want to check whether variables or characteristics are independent
(when we will perform so-called tests of independence).

1.1. Goodness of fit tests. Let us first look at tests that may be used if we want to verify
a hypothesis about the distribution of an observed random variable. We will have different
categories of tests, depending on whether the specified distribution is continuous or discrete.

1.1.1. Tests for continuous distributions – Kolmogorov type tests. Let us assume that we have
a sample X1, X2, . . . , Xn from a continuous distribution with cumulative distribution function
F , and we want to verify the null hypothesis H0 : F = F0 (for a specific CDF F0) against the
alternative that the CDF is different. In such a case we may use a test from a class of tests
connected with the name of Kolmogorov. These tests are based on theorems which state that
regardless of the true form of the cumulative distribution function F0, if we look at the highest
possible difference between Fn – the empirical CDF (based on the sample X1, X2, . . . , Xn) –
and F0, the distribution of this difference does not depend on the exact form of F0 (assuming
that the null hypothesis is true). In other words, if we compare the stair-like empirical
distribution function Fn with the continuous true cumulative distribution function F0, the
difference between these two functions is s random variable, whose distribution depends only
on the number of observations on which the empirical distribution function is based on.

Formally, in the testing procedure we will use a test statistic

Dn = sup
t∈R
|Fn(t)− F0(t)| = max{D+

n , D
−
n },

where

D+
n = max

i=1,...,n
| i
n
− F0(Xi:n)| and D−n = max

i=1,...,n
|i− 1

n
− F0(Xi:n)|,

and reject the null hypothesis if the value of this test statistic is too large (larger than an
appropriate quantile of the distribution of Dn, under the null hypothesis). The appropriate
quantiles of the resulting Kolmogorov distribution may be found in tables. At this point we
will just signal that this distribution formally requires tables for all specific values of n. It
can be shown, however, that

P(
√
nDn ≤ d)

n→∞−−−→ K(d) =
+∞∑
i=−∞

(−1)ke−2i
2d2 ,

which means that the function K(d) may be used to compute approximate values of the
distribution quantiles for specific values of n. This approximation may be used for n ≥ 100,
and in such cases we have:

1− α 0.8 0.9 0.95 0.99
quantile of K(d) 1.07 1.22 1.36 1.63

critical value c(n, α) for n ≥ 100 1.07/
√
n 1.22/

√
n 1.36/

√
n 1.63/

√
n
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1.1.2. Tests for discrete distributions – Chi-square type tests. A totally different class of di-
stributions is used for the verification of hypotheses for discrete distributions. Let us assume
that we have a sample of observations from a discrete distribution with k possible values. For
simplicity, we will denote these values by 1, . . . , k. These values may be treated as value labels
– the exact values are not used in the testing procedure (only their probabilities are conside-
red). Let us now assume that we wish to test the null hypothesis H0 that the distribution
probabilities are equal to

i 1 2 3 . . . k
P(X = i) p1 p2 p3 . . . pk

against the alternative that they are not. Let us assume that the observed outcomes in reality
are

i 1 2 3 . . . k
Ni N1 N2 N3 . . . Nk

where Ni denotes the number of outcomes equal to i, and N1 + N2 + . . . + Nk = n. We will
use a chi-square test statistic, which has a general form that may be described as

χ2 =
∑ (observed value - expected value)2

expected value
,

and in this particular case has the form

χ2 =
k∑
i=1

(Ni − n · pi)2

n · pi
.

Please note that if the empirical distribution shows a perfect fit to the theoretical distribution,
the test statistic amounts to zero. The larger the difference between the observed and the
expected values, the larger the value of the test statistic. Therefore, we will reject the null
hypothesis if the value of the test statistic is larger than an appropriate critical value. It
may be shown that if the null hypothesis is true, the distribution of the test statistic χ2

converges, as n tends to infinity, to χ2(k− 1) – a chi-square distribution with k− 1 degrees of
freedom (where k is the number of values of the discrete distribution considered). Therefore,
we should reject the null hypothesis in favor of the alternative if the calculated test statistic
is larger than c = χ2

1−α(k− 1), where χ2
1−α(k− 1) is a quantile of rank 1−α of the chi-square

distribution with k − 1 degrees of freedom.
The chi-square test may also be applied in cases where we do not have an exact, single

distribution, but a family of different distributions for different values of a parameter (i.e.,
the model assumed in the null hypothesis is not probabilistic but rather stochastic). In such
a case, the test statistics are constructed just like in the above procedure, with the expected
values calculated using maximum likelihood estimators of the unknown parameter. Only the
number of degrees of freedom changes: it can be shown that if the null hypothesis is true,
the distribution of the chi-square test statistic converges as n tends to infinity to a chi-square
distribution with k−d−1 degrees of freedom, where d is the dimension of the parameter being
estimated. The philosophy behind this property is the following: if we compare an empirical
distribution with a ‘theoretical’ distribution, which is not purely theoretical anymore but has
been adjusted to fit the data (a ML estimator for the data has been calculated), then for the
same sample size we expect better accuracy (smaller errors) than in cases where the empirical
distribution is compared to a benchmark which has nothing to do with empirical data. This
is equivalent to subtracting degrees of freedom in the chi-square distribution, one degree of
freedom per each parameter that has been fit to data.

Example. If we wished to verify whether a collected sample comes from a Poisson distribu-
tion with some parameter λ, we would first calculate the maximum likelihood estimator of the
value of λ (i.e., the empirical average in this case), and then substitute the estimator value
in the formulas when calculating expected counts. The parameter λ is single-dimensional,
therefore we would subtract 1 from the number of degrees of freedom of the chi-square distri-
bution that we would treat as a benchmark. Additionally, we would need to pay attention
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to the number of outcomes, k. A Poisson distribution has infinitely many possible outcomes.
However, for the majority of the outcomes (infinitely many of them, in fact), the expected
counts will be extremely small. Such cases should be aggregated, in order to avoid bias resul-
ting from division by very small expected counts. Generally, one may apply a rule of thumb
stating that if a category has an expected count lower than 5 (taking into account sample size
and the value of the ML estimator), it should be merged with adjacent categories. The same
rule applies to the probabilistic models described previously: categories with low expected
counts should be merged.

It is worth noting that the chi-square goodness of fit test may also be applied to continuous
distributions. It suffices to divide the range of values of the studied random variable into
classes and count the observations which fall into these classes. The expected probabilities
of falling into each class are known (they result from the distribution and may be calculated
based on the cumulative distribution function F0). Once we have the expected and observed
counts for the k categories, we may apply the chi-square test just like for the discrete case. It
is worth noting, however, that the chi-square test requires larger sample sizes.

1.2. Tests of independence. Let us now consider the case where we wish to verify whe-
ther two dimensions of a phenomenon under study are independent (for example, whether
preference for cakes depends on age or whether income is independent from gender). Using
the observation made above, we may assume that the considered distributions are discrete
(if they are not, we may divide the value ranges into classes and proceed based on these
classes), and that the first dimension has r values, 1, . . . , r, while the second dimension has s
values, 1, . . . , s. In such a case, the two-dimensional random variable has r · s values. Let the
theoretical distribution be

pij = P(X = i, Y = j), for i = 1, . . . , r, j = 1, . . . , s.

Let us introduce the following notation:

p•j =
r∑
i=1

pij, pi• =
s∑
j=1

pij.

If we want to verify the independence of the two dimensions, we may write the null hypothesis
as

H0 : pij = pi• · p•j, i = 1, . . . , r, j = 1, . . . , s.

We may test this null against the alternative that H0 is not true using a version of the
chi-square goodness of fit test. Note that in this case, we wish to verify whether the two-
dimensional random vector under study has the required distribution with r · s values, and
we have (r − 1) + (s− 1) unknown parameters to be estimated. These unknown parameters
are the probabilities pi• and p•j for r−1 and s−1 categories, respectively (the last categories
may be found using the property that the probabilities in a discrete distribution add up to 1,
and that is why there are only r − 1 + s− 1 and not r + s unknown parameters).

As far as the estimates of the unknown parameters pi• and p•j are concerned, the ML
estimators are the same as the frequency estimators, and can be calculated as:

p̂i• =
Ni•

n
and p̂•j =

N•j
n
,

where Ni• and N•j are empirical counts for the aggregate categories

N•j =
r∑
i=1

Nij, Ni• =
s∑
j=1

Nij.

Under the null hypothesis of independence, the expected counts npij can therefore be esti-
mated to be

np̂ij = n · Ni•

n
· N•j
n

=
Ni•N•j
n

.
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In such a setting, we may use the following test statistic:

χ2 =
r∑
i=1

s∑
j=1

(Nij −Ni•N•j/n)2

Ni•N•j/n
,

which, under the null hypothesis, has a chi-square distribution with rs−(r−1)−(s−1)−1 =
(r − 1)(s − 1) degrees of freedom, and proceed exactly like in the chi-square goodness of fit
testing procedure. Namely, we will reject the null if the value of the test statistic exceeds the
quantile of rank 1− α of the chi-square distribution with (r − 1)(s− 1) degrees of freedom.
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