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1. Hypothesis Testing – Neyman-Pearson Lemma

In the previous lecture, we looked at the steps of a statistical procedure and discussed how
to describe the basic properties of a statistical test. In this lecture, we will tackle the problem
of choosing the best test. The basic rule of comparing tests is the following: for a given set of
null and alternative hypotheses, for a given significance level, the test which is more powerful
is better. Formally, we will say that:

Definition 1. Let X ∼ Pθ, where {Pθ : θ ∈ Θ} be a statistical model. Let H0 : θ ∈ Θ0 and
H1 : θ ∈ Θ1 describe the null and alternative hypotheses, respectively (we have Θ0 ∩Θ1 = ∅).
Let C1 and C2 be critical regions associated with two tests, both at a significance level α. The
test with critical region C1 is more powerful than the test with critical region C2, if

∀θ ∈ Θ1 : Pθ(C1) ≥ Pθ(C2) and ∃θ1 ∈ Θ1 : Pθ1(C1) > Pθ1(C2)

In other words, a test is more powerful than another test, if it is equally as good for all
possible values of parameter θ from the alternative hypothesis range, and there is at least one
value of the parameter for which it is strictly better. For a given set of null and alternative
hypotheses, H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, we may also define:

Definition 2. C∗ is a uniformly most powerful test (UMPT) for significance level α, if:
(1) C∗ is a test at significance level α, i.e. for any θ ∈ Θ0 : Pθ(C

∗) ≤ α and
(2) for any test C at significance level α, we have, for any θ ∈ Θ1:

Pθ(C
∗) ≥ Pθ(C).

In other words, a UMPT is a test which has a power at least as large as any other test of
the same hypotheses. If the alternative hypothesis space is simple (Θ1 only contains of one
element), the word ‘uniformly’ is redundant.

1.1. Likelihood ratio test for testing simple hypotheses. Let us assume that we wish
to test two simple hypotheses: H0 : θ = θ0 against the alternative H1 : θ = θ1. We can
rephrase this to become H0 : X ∼ f0 against H1 : X ∼ f1, where f0 and f1 are densities of
the distributions defined by θ0 and θ1, respectively.

Theorem 1 (Neyman-Pearson Lemma). Let

C∗ =

{
x ∈ X :

f1(x)

f0(x)
> c

}
,

such that P0(C∗) = α and P1(C∗) = 1− β. Then, for any C ⊆ X , we have:
if P0(C) ≤ α, then P1(C) ≤ 1−β. In other words, the test with critical region C∗ is the most
powerful test for testing H0 against H1.

The philosophy behind this test is the following: we compare the chances of obtaining the
data that we observe under the null and alternative hypotheses. If the likelihood of obtaining
the data is much higher for the alternative hypothesis than for the null hypothesis (c times as
high, where c is calculated so as to satisfy the condition for the significance level), we reject
the null in favor of the alternative.

In many cases – especially when the space of observations is more than one-dimensional
– it is easier to write the critical region of the test as C∗ = {x : ln f1(x)− ln f0(x) > c1}.
Obviously, this expression may (usually) be simplified.

Examples:
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(1) Let X1, X2, . . . , Xn be a random sample from a normal distribution N(µ, σ2) with
unknown parameter µ and known σ. Suppose that we want to test the null hypothesis
that H0 : µ = 0 against the alternative that H1 : µ = 1. We will construct the most
powerful test using the Neyman-Pearson Lemma:

We have that f0(x1, . . . , xn) = 1
(
√

2πσ)n
e−

∑
(xi−0)2/2σ2

, while

f1(x1, . . . , xn) = 1
(
√

2πσ)n
e−

∑
(xi−1)2/2σ2

.

Therefore, the ratio

f1

f0

=

1
(
√

2πσ)n
e−

∑
(xi−1)2/2σ2

1
(
√

2πσ)n
e−

∑
(xi−0)2/2σ2 = e

∑
(xi−0)2/2σ2−

∑
(xi−1)2/2σ2

.

The condition f1
f0
> c is equivalent to ln f1 − ln f0 > ln c = c1, so we must have that∑

(xi − 0)2/2σ2 −
∑

(xi − 1)2/2σ2 > c1,∑
(xi − 0)2 −

∑
(xi − 1)2 > c1 · 2σ2 = c2,

∑
((xi − 0)2 − (xi − 1)2) =

∑
(xi − 0− xi + 1)(xi − 0 + xi − 1) > c2,∑

(2xi − 1) > c2,∑
(2xi) > c2 + n = c3,∑
xi > c3/2 = c4,

or, equivalently,
X̄ > c4/n = c5.

Therefore, the most powerful test for testing the null hypothesis that H0 : µ = 0
against the alternative that H1 : µ = 1 may be expressed in the following form: if
the sample average of observations is greater than some constant, we reject the null.
An equivalent version of the test would state: if the sample sum of observations is
greater than some constant (note that this is a different constant than in the previous
sentence), we reject the null.

Now, in order to proceed and provide the constant (critical value) in either version of
the test, we need to assume a specific significance level α first. We will then determine
a constant for the given significance level, by equating the required significance level
to the probability of falling into the critical region if the null hypothesis is true. In
the case of our example, since we know that X̄ has a normal distribution with mean
µ and variance equal to σ2/n, under the null hypothesis we have that

P0(X̄ > c5) = P0(
X̄ − 0

σ

√
n >

c5 − 0

σ

√
n) = 1− Φ(

c5 − 0

σ

√
n).

If this last value is to be equal to α, then we must have that c5−0
σ

√
n = u1−α, where

u1−α is the quantile of rank 1− α of the standard normal distribution. Therefore, we
should take

c5 =
σu1−α√

n
.

Therefore, the most powerful test for testing the null hypothesis that H0 : µ = 0
against the alternative that H1 : µ = 1 for a significance level α has the following
form: we reject the null hypothesis in favor of the alternative if X̄ > σu1−α√

n
.

Please note that we absolutely do not need to go back to the initial form of the test
(with f1/f0 and the constant c) – we have an equivalent, but simpler formula.
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(2) Let again X1, X2, . . . , Xn be a random sample from a normal distribution N(µ, σ2)
with unknown parameter µ and known σ. Suppose now that we want to test the null
hypothesis that H0 : µ = 0 against the alternative that H1 : µ = −1. The Neyman-
Pearson Lemma procedure will yield almost the same results as in the example above,
with one small but significant change. When simplifying the expression f1/f0, where

this time f1(x1, . . . , xn) = 1
(
√

2πσ)n
e−

∑
(xi+1)2/2σ2

, we will get

∑
((xi − 0)2 − (xi+1)2) =

∑
(xi − 0− xi − 1)(xi − 0 + xi − 1) > c2,

which leads to a negative left hand side:

−
∑

(2xi − 1) > c2,

which in turn translates to ∑
(2xi − 1)<c2.

Therefore, the final form of the test will be X̄ < σuα√
n

(we take a quantile of rank

α since we take the value of the CDF and not the value of the tail of the CDF). We
reject the null hypothesis in favor of the alternative if the sample average is too small.

1.2. Likelihood ratio test for testing composite hypotheses. Now, let us assume that
we wish to test two more general hypotheses: H0 : θ ∈ Θ0 against the alternative H1 : θ ∈ Θ1.
We can rephrase this to become H0 : X ∼ f0(θ0, ·) for some θ0 ∈ Θ0, against the alternative
H1 : X ∼ f1(θ1, ·), for some θ1 ∈ Θ1, where f0 and f1 are densities of the distributions
for θ0 and θ1, respectively. Note that this is a generalization of the assumptions of the
Neyman-Pearson Lemma, in that we allow statistical models (with unknown parameters) in
the hypothesis, rather than probabilistic models (where the value of the parameters is known).

In such a case, we may use the following test statistics:

λ =
supθ1∈Θ1

f1(θ1, X)

supθ0∈Θ0
f0(θ0, X)

=
f1(θ̂1, X)

f0(θ̂0, X)
,

where θ̂0 and θ̂1 are ML estimators of parameter θ for the null and alternative hypotheses,
respectively, or

λ̃ =
supθ∈Θ f(θ,X)

supθ0∈Θ0
f0(θ0, X)

=
f(θ̂, X)

f0(θ̂0, X)
,

where θ̂0 is a ML estimator of parameter θ for the null hypothesis, while θ̂ is the ML estimator
for parameter θ in a model without restrictions (i.e., for Θ0 ∪Θ1).

In both cases, the specification of the LR test will be of the form λ > c or λ̃ > c, where c
is a constant corresponding to the adopted significance level. The second version is especially
useful if the null hypothesis is simple (for example, we test λ = 1

2
against the alternative

λ 6= 1
2

– in such a case we will take the density with parameter λ = 1
2

in the denominator,
and the density with the ML estimator of λ in the numerator), or the models are nested (for
example, we test the null hypothesis that data come from an exponential distribution, which
is a special case of the gamma distribution family, against the alternative that the distribution
is gamma, but not exponential).

Please note that in case of composite hypotheses, we can’t formulate a theorem which would
correspond to the Neyman-Pearson Lemma – i.e., we will not be able to say that the LR test
is the most powerful test for a given set of null and alternative hypotheses. This is because in
some cases, the UMPT test does not exist (so the LR test will not be UMP because there is no
such test)... This might happen, for example, if we wish to test a null hypothesis H0 : θ = θ0

against the alternative H0 : θ 6= θ0 if the family of distributions has a monotonic LR property,
i.e. if f1(x)/f0(x) is an increasing function of a statistic T (x) for any f0 and f1 corresponding
to parameters θ0 < θ1. In order to have UMPT for H0 : θ = θ0 against H1 : θ > θ0 we would
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need a critical region of the type T (x) > c, and to have a UMPT for H0 : θ = θ0 against
H1 : θ < θ0 we would need a critical region of the type T (x) < c (please note examples (1)-(2)
in the previous subsection!), so it is impossible to find a UMPT for H1 : θ 6= θ0.
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