Mathematical Statistics

Anna Janicka

Lecture XIII, 26.05.2022

Anova
Non-Parametric Tests

Plan for Today

1. Comparing two populations - cont.
2. Analysis of variance tests (ANOVA)
3. Goodness-of-fit tests

- Kolmogorov test
- chi-square goodness-of-fit

Model I: comparison of means, variance known, significance level α - reminder
$X_{1}, X_{2}, \ldots, X_{n x}$ are an IID sample from distr $\mathrm{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$, $\sigma_{X}{ }^{2}, \sigma_{Y}{ }^{2}$ are known, samples are independent $H_{0}: \mu_{X}=\mu_{Y}$

$$
U=\quad \bar{X}-\bar{Y}
$$

Test statistic:

$$
U=\frac{X-r}{\sqrt{\sigma_{v,}^{2} \sigma_{v,}^{2}}} \sim N(0,1)
$$

$$
\sqrt{\sigma_{X}^{2} / n_{X}+\sigma_{Y}^{2} / n_{Y}}
$$

$H_{0}: \mu_{x}=\mu_{\curlyvee}$ against $H_{1}: \mu_{x}>\mu_{\curlyvee}$
assuming H_{0} is true
critical region

$$
C^{*}=\left\{x: U(x)>u_{1-\alpha}\right\}
$$

$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{Y}$
critical region $\quad C^{*}=\left\{x:|U(x)|>u_{1-\alpha / 2}\right\}$

Model II: variance unknown but assumed equal, significance level α - reminder

$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr $\mathrm{N}\left(\mu_{\mathrm{X}}, \sigma^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma^{2}\right)$ with σ^{2} unknown, samples are independent

$H_{0}: \mu_{x}=\mu_{\mathrm{r}}$ against $H_{1}: \mu_{x}>\mu_{\mathrm{Y}}$

$$
S_{*}^{2}=\frac{\left(n_{x}-1\right) S_{X}^{2}+\left(n_{Y}-1\right) S_{Y}^{2}}{n_{x}+n_{y}-2}
$$

critical region $\quad C^{*}=\left\{x: T(x)>t_{1-\alpha}\left(n_{x}+n_{y}-2\right)\right\}$
$H_{0}: \mu_{X}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{Y}$
critical region $C^{*}=\left\{x:|T(x)|>t_{1-\alpha / 2}\left(n_{x}+n_{y}-2\right)\right\}$

$$
s_{X}^{2}=\frac{1}{n_{x}-1} \sum_{i=1}^{n_{x}}\left(X_{i}-\bar{x}\right)^{2}, s_{y}^{2}=\frac{1}{n_{y}-1} \sum_{i=1}^{n_{y}}\left(x_{i}-\bar{x}\right)^{2}
$$

Model II: comparison of variances, significance level α

$X_{1}, X_{2}, \ldots, X_{n x}$ are an IID sample from distr $\mathrm{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$, $\sigma_{X}{ }^{2}, \sigma_{Y}{ }^{2}$ are unknown, samples are independent
$H_{0}: \sigma_{X}=\sigma_{Y}$
Test statistic:

$$
\begin{aligned}
& F=\frac{S_{X}^{2}}{S_{Y}^{2}} \sim F \\
& \therefore \sigma_{X}>\sigma_{Y}
\end{aligned}
$$

critical region $\quad C^{*}=\left\{x: F(x)>F_{1-\alpha}\left(n_{X}-1, n_{Y}-1\right)\right\}$ $H_{0}: \sigma_{X}=\sigma_{Y}$ against $H_{1}: \sigma_{X} \neq \sigma_{Y}$
critical region $\quad C^{*}=\left\{x: F(x)<F_{\alpha / 2}\left(n_{X}-1, n_{Y}-1\right)\right.$

$$
\left.\vee F(x)>F_{1-\alpha / 2}\left(n_{X}-1, n_{Y}-1\right)\right\}
$$

$$
S_{X}^{2}=\frac{1}{n_{X}-1} \sum_{i=1}^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}, S_{Y}^{2}=\frac{1}{n_{Y}-1} \sum_{i=1}^{n_{Y}}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Model III: comparison of means for large samples, significance level α

$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr. with mean μ_{X}, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr. with mean μ_{Y}, both distr. have unknown variances, samples are independent, n_{X}, n_{Y} - large.
$H_{0}: \mu_{X}=\mu_{Y}$ Test statistic:

$$
U=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_{X}^{2}}{n_{X}}+\frac{S_{Y}^{2}}{n_{Y}}}} \sim N(0,1)
$$

critical region

$$
C^{*}=\left\{x: U(x)>u_{1-\alpha}\right\}
$$

$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x}>\mu_{Y}$
$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{\curlyvee}$
critical region

$$
C^{*}=\left\{x:|U(x)|>u_{1-\alpha / 2}\right\}
$$

$$
S_{X}^{2}=\frac{1}{n_{y}-1} \sum^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}, S_{Y}^{2}=\frac{1}{n_{v}-1} \sum^{n_{Y}}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Model III - example (equality of means?)

1167 students take part in a probability calculus exam. Is attending lectures profitable? $(\alpha=0.05)$
Among those, who participated 3 times (93 students):

$$
\text { mean }=3, \text { variance }=0.70 ;
$$

Among those, who participated less than 3 times (74 students): mean $=2.72$, variance $=0.69$.
Value of the test statistic

$$
U=\frac{3-2.72}{\sqrt{0.70 / 93+0.69 / 74}} \approx 2.13
$$

Model IV: comparison of fractions for large samples, significance level α

Two IID samples from two-point distributions. X - number of successes in n_{X} trials with prob of success p_{X}, Y - number of successes in n_{Y} trials with prob of success $p_{Y} . p_{X}$ and p_{Y} unknown, n_{X} and n_{Y} large.

$$
H_{0}: p_{X}=p_{Y}
$$

Test statistic:

$$
\begin{aligned}
& U^{*}=\frac{\frac{X}{n_{X}}-\frac{Y}{n_{Y}}}{\sqrt{p_{*}\left(1-p_{*}\right)\left(\frac{1}{n_{X}}+\frac{1}{n_{Y}}\right)}} \sim N \\
& \text { st } H_{1}: p_{X}>p_{Y} \\
& \text { ion } \quad C^{*}=\left\{x: U^{*}(x)>u_{1-\alpha}\right\}
\end{aligned}
$$

$H_{0}: p_{X}=p_{Y}$ against $H_{1}: p_{X} \neq p_{Y}$
critical region

$$
C^{*}=\left\{x:\left|U^{*}(x)\right|>u_{1-\alpha / 2}\right\}
$$

Model IV - example (equality of probabilities?)

1167 students take part in a probability calculus exam. Is attending lectures profitable? $(\alpha=0.05)$
Among those, who participated 3 times (93 students): 64 passed (68.8\%);
Among those, who participated less than 3 times (74 students): 36 passed (48.6\%).
Value of the test statistic

$$
U=\frac{0.688-0.486}{\sqrt{100 / 167 \cdot 67 / 167 \cdot(1 / 93+1 / 74)}} \approx 2,55
$$

Tests for more than two populations

A naive approach:
pairwise tests for all pairs
But:
in this case, the type I error is higher than the significance level assumed for each simple test...

More populations

Assume we have k samples:

$$
\begin{aligned}
& X_{1,1}, X_{1,2}, \ldots, X_{1, n_{1}}, \\
& X_{2,1}, X_{2,2}, \ldots, X_{2, n_{2}} \\
& \ldots \\
& X_{k, 1}, X_{k, 2}, \ldots, X_{k, n_{k}}, \text { and }
\end{aligned}
$$

- all $X_{i, j}$ are independent $\left(i=1, \ldots, k, j=1, . ., n_{i}\right)$
- $X_{i, j} \sim N\left(m_{i}, \sigma^{2}\right)$
- we do not know $m_{1}, m_{2}, \ldots, m_{k}$, nor σ^{2}

$$
\text { let } n=n_{1}+n_{2}+\ldots+n_{k}
$$

Test of the Analysis of Variance (ANOVA) for significance level α

$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
$H_{1}: \neg H_{0} \quad$ (i.e. not all μ_{i} are equal)
A LR test; we get a test statistic:

$$
F=\frac{\sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2} /(n-k)} \sim F(k-1, n-k)
$$

with critical region assuming H_{0} is true

$$
\begin{aligned}
& C^{*}=\left\{x: F(x)>F_{1-\alpha}(k-1, n-k)\right\} \\
& \qquad \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i, j}, \bar{X}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{i, j}=\frac{1}{n} \sum_{i=1}^{k} n_{i} \bar{X}_{i}
\end{aligned}
$$

for $k=2$ the ANOVA is equivalent to the two-sample t-test.

ANOVA - interpretation

we have $h_{n_{i}}{ }^{2}$

Sum of Squares (SS)

Sum of Squares Between (SSB)

Sum of Squares Within (SSW)
$\frac{1}{k-1} \sum_{i_{\bar{k}}=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}$ - between group variance estimator
$\frac{1}{n-k} \sum_{i=1} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2}$ - within group variance estimator

ANOVA test - table

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	SSB	$\mathrm{k}-1$	-
within groups	SSW	$\mathrm{n}-\mathrm{k}$	-
total	SS	$\mathrm{n}-1$	F

ANOVA test - example

Yearly chocolate consumption in three cities: A, B, C based on random samples of $n_{A}=8, n_{B}=10, n_{C}=9$ consumers. Does consumption depend on the city?

	A	B	C
sample mean	11	10	7
sample variance	3.5	2.8	3

$\bar{X}=\frac{1}{27}(11 \cdot 8+10 \cdot 10+7 \cdot 9)=9.3$
$S S B=(11-9.3)^{2} \cdot 8+(10-9.3)^{2} \cdot 10+(7-9.3)^{2} \cdot 9=75.63$
$S S W=3.5 \cdot 7+2.8 \cdot 9+3 \cdot 8=73.7$
$F=\frac{75.63 / 2}{73.7 / 24} \approx 12.31$ and $F_{0.99}(2,24) \approx 5.61$ \rightarrow reject H_{0} (equality of means),

ANOVA test - table - example

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	75.63	2	-
within groups	73.7	24	-
total	149.33	26	12.31

Non-parametric tests

\square we check whether a random variable fits a given distribution (goodness-of-fit tests).
\square we check whether random variables have the same distribution
\square we check whether variables/characteristics are independent (test of independence)

Kolmogorov goodness-of-fit test

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from distribution with CDF F.
$H_{0}: F=F_{0}$
(F_{0} specified)
$H_{1}: \neg H_{0}$
(i.e. the CDF is different)

If F_{0} is continuous, we use the statistic

$$
D_{n}=\sup _{t \in R}\left|F_{n}(t)-F_{0}(t)\right|=\max \left\{D_{n}^{+}, D_{n}^{-}\right\}
$$

where

$$
\begin{aligned}
& D_{n}^{+}=\max _{i=1, \ldots, n}\left|\frac{i}{n}-F_{0}\left(x_{i: n}\right)\right|, D_{n}^{-}=\max _{i=1, \ldots, n}\left|F_{0}\left(x_{i: n}\right)-\frac{i-1}{n}\right| \\
& \text { and } F_{n}(t)-n \text {-th empirical CDF }
\end{aligned}
$$

Kolmogorov goodness-of-fit test - cont.

The test: we reject H_{0} when:

$$
D_{n}>c(\alpha, n)
$$

for a critical value $c(\alpha, n)$.
Theorem. If H_{0} is true, the distribution of D_{n} does not depend on F_{0}.
Problem: This distribution needs tables, for each different n.

Theorem. In the limit
the approximation may be used for $n \geq 100$

Kolmogorov goodness-of-fit test - cont. (2)

Tables of the asymptotic distribution $K(d)$

$1-\alpha$	0.8	0.9	0.95	0.99
quantile of $K(d)$	1.07	1.22	1.36	1.63
$c(n, \alpha)$ for $n \geq 100$	$1.07 / \sqrt{n}$	$1.22 / \sqrt{n}$	$1.36 / \sqrt{n}$	$1.63 / \sqrt{n}$

Kolmogorov goodness-of-fit test - example

Does the sample
0.4085
0.5267
0.3751
0.8329
0.0846
0.8306
0.6264
0.3086
0.36620 .7952 come from a uniform distribution $U(0,1)$?

Kolmogorov goodness-of-fit test - example cont.

| $X_{i \cdot 10}$ | $(\mathrm{i}-1) / 10$ | $\mathrm{i} / 10$ | $\mathrm{i} / 10-\mathrm{F}\left(\mathrm{X}_{\mathrm{i}-10}\right)$ | $\mathrm{F}\left(\mathrm{X}_{\mathrm{i}-10}\right)-(\mathrm{i}-1) / 10$ |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 0.0846 | 0 | 0.1 | 0.0154 | 0.0846 |
| 0.3086 | 0.1 | 0.2 | -0.1086 | $\mathbf{0 . 2 0 8 6}$ |
| 0.3662 | 0.2 | 0.3 | -0.0662 | 0.1662 |
| 0.3751 | 0.3 | 0.4 | 0.0249 | 0.0751 |
| 0.4085 | 0.4 | 0.5 | 0.0915 | 0.0085 |
| 0.5267 | 0.5 | 0.6 | 0.0733 | 0.0267 |
| 0.6264 | 0.6 | 0.7 | 0.0736 | 0.0264 |
| 0.7952 | 0.7 | 0.8 | 0.0048 | 0.0952 |
| 0.8306 | 0.8 | 0.9 | 0.0694 | 0.0306 |
| 0.8329 | 0.9 | 1 | $\mathbf{0 . 1 6 7 1}$ | -0.0671 |

$$
D_{n}=0.2086 \quad c(10 ; 0.9)=0.369
$$

\rightarrow no grounds to reject the null hypothesis that the distribution is uniform

Chi-square goodness-of-fit test

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a discrete distribution with k values $(1, \ldots, k)$. H_{0} : the distribution probabilities are equal to

i	1	2	3	\ldots	k
$P(X=1)$	p_{1}	p_{2}	p_{3}	\ldots	p_{k}

$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different)
If the results of the experiment are
value labels

i	1	2	3	\ldots	k
N_{i}	N_{1}	N_{2}	N_{3}	\ldots	N_{k}

where N_{i} denotes the number of outcomes
equal to $i_{\text {non semeses }} \quad N_{i}=\sum_{j=1}^{n} 1_{X_{j}=i}$

Chi-square goodness-of-fit test - cont.

General form of the test:

$$
\chi^{2}=\sum \frac{(\text { observed value }- \text { expected value })^{2}}{\text { expected value }}
$$

here:

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(N_{i}-n p_{i}\right)^{2}}{n p_{i}}
$$

Theorem. If H_{0} is true, the distribution of the χ^{2} statistic converges to a chi-square distr with k-1 degrees of freedom $\chi^{2}(k-1)$ for $n \rightarrow \infty$
Procedure: we reject H_{0} if $\chi^{2}>c$, where $c=\chi^{2}{ }_{1-\alpha}(k-1)$ is a quantile of rank $1-\alpha$ from a chisquare distr with k-1 degrees of freedom

Chi-square goodness-of-fit test - example

Is a die symmetric? For a significance level $\alpha=0.05$ $n=150$ tosses. Results:

i	1	2	3	4	5	6
N_{i}	15	27	36	17	26	29

$H_{0}:\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right)$ $\sim \operatorname{Mult}(150,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)$
$H_{1}: \neg H_{0}$
$\chi^{2}=\frac{(15-25)^{2}}{25}+\frac{(27-25)^{2}}{25}+\frac{(36-25)^{2}}{25}+\frac{(17-25)^{2}}{25}+\frac{(26-25)^{2}}{25}+\frac{(29-25)^{2}}{25}$
$=12.24$

Chi-square goodness-of-fit test - distribution with an unknown parameter.

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a discrete distribution with k values $(1, \ldots, k)$. H_{0} : distribution probabilities are equal to

i	1	2	3	\ldots	k
$\mathrm{P}(X=i)$	$p_{1}(\theta)$	$p_{2}(\theta)$	$p_{3}(\theta)$	\ldots	$p_{k}(\theta)$

where θ is an unknown parameter of dimension d.
$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different)

Chi-square goodness-of-fit test - distribution with an unknown parameter, cont.

Test statistics are constructed like in the previous case, with the expected values calculated using ML estimators of the parameter θ. Only the number of degrees of freedom changes:
Theorem. If H_{0} is true, the distribution of the χ^{2} statistic converges to a chi-square distribution with $k-d-1$ degrees of freedom $\chi^{2}(k-d-1)$ for $n \rightarrow \infty$

Chi-square goodness-of-fit test - version for continuous distributions

Kolmogorov tests are better, but the chisquare test may also be used
Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a continuous distribution.
H_{0} : The distribution is given by F
$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different) It suffices to divide the range of values of the random variable into classes and count the observations. The expected values are known (result from F). Then: the chi-square test.

Chi-square goodness-of-fit test - practical notes

\square The test should be used for large samples only.
\square The expected counts can't be too small (<5). If they are smaller, observations should be grouped.
\square The classes in the „continuous" version may be chosen arbitrarily, but it is best if the theoretical probabilities are balanced.

2
Faculty of Economic Sciences

