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Plan for Today

1. Comparing two populations – cont. 

2. Analysis of variance tests (ANOVA)

3. Goodness-of-fit tests

◼ Kolmogorov test

◼ chi-square goodness-of-fit



Model I: comparison of means, variance known,

significance level  – reminder

X1, X2, ..., XnX are an IID sample from distr N(X,X
2), 

Y1, Y2, ..., YnY are an IID sample from distr N(Y,Y
2), 

X
2, Y

2 are known, samples are independent

H0: x = Y

Test statistic:

H0: x = Y against H1: x > Y

critical region 

H0: x = Y against H1: x  Y

critical region 

𝑈 =
ሜ𝑋 − ሜ𝑌

ൗ𝜎𝑋
2

𝑛𝑋 +
ൗ𝜎𝑌
2

𝑛𝑌

~𝑁 (0,1)

𝐶∗ = {𝑥 : 𝑈 (𝑥) > 𝑢1−𝛼}

𝐶∗ = {𝑥 : | 𝑈(𝑥)| > 𝑢1−𝛼/2}

assuming H0 is 

true 



X1, X2, ..., XnX are an IID sample from distr N(X, 2), 

Y1, Y2, ..., YnY are an IID sample from distr N(Y, 2) 

with 2 unknown, samples are independent

H0: x = Y Test statistic:

H0: x = Y against H1: x > Y

critical region 

H0: x = Y against H1: x  Y

critical region 

𝑇 =
ሜ𝑋 − ሜ𝑌

𝑆∗
1
𝑛𝑋

+
1
𝑛𝑌

~𝑡 (𝑛𝑋 + 𝑛𝑌 − 2)

Model II: variance unknown but assumed equal, 

significance level  – reminder

C
∗
= {𝑥 : 𝑇 (𝑥) > 𝑡1−𝛼(𝑛𝑥 + 𝑛𝑦 − 2)}

𝐶∗ = {𝑥 : | 𝑇(𝑥)| > 𝑡1−𝛼/2(𝑛𝑥 + 𝑛𝑦 − 2)}

Assuming H0 is

true

𝑆𝑋
2 =

1

𝑛 𝑋−1
෍

𝑖=1

𝑛𝑋

(𝑋𝑖 − ሜ𝑋)2, 𝑆𝑌
2 =

1

𝑛 𝑌−1
෍

𝑖=1

𝑛𝑌

(𝑌𝑖 − ሜ𝑌)2

𝑆∗
2 =

(𝑛𝑥 − 1)𝑆𝑋
2 + (𝑛𝑌 − 1)𝑆𝑌

2

𝑛𝑥 + 𝑛𝑦 − 2



Model II: comparison of variances,

significance level 

X1, X2, ..., XnX are an IID sample from distr N(X,X
2), 

Y1, Y2, ..., YnY are an IID sample from distr N(Y,Y
2), 

X
2, Y

2 are unknown, samples are independent

H0: X = Y

Test statistic:

H0: X = Y against H1: X > Y

critical region 

H0: X = Y against H1: X  Y

critical region 

𝐹 =
𝑆𝑋
2

𝑆𝑌
2~𝐹 (𝑛𝑋 − 1, 𝑛𝑌 − 1)

𝐶∗ = {𝑥 : 𝐹 (𝑥) > 𝐹1−𝛼(𝑛𝑋 − 1, 𝑛𝑌 − 1)}

𝐶∗ = {𝑥 : 𝐹 (𝑥) < 𝐹𝛼/2(𝑛𝑋 − 1, 𝑛𝑌 − 1)

∨ 𝐹(𝑥) > 𝐹1−𝛼/2(𝑛𝑋 − 1, 𝑛𝑌 − 1)}

assuming H0 is 

true

𝑆𝑋
2 =

1

𝑛 𝑋−1
෍

𝑖=1

𝑛𝑋

(𝑋𝑖 − ሜ𝑋)2 , 𝑆𝑌
2 =

1

𝑛 𝑌−1
෍

𝑖=1

𝑛𝑌

(𝑌𝑖 − ሜ𝑌)2



Model III: comparison of means for large 

samples, significance level 

X1, X2, ..., XnX are an IID sample from distr. with mean X,      

Y1, Y2, ..., YnY are an IID sample from distr. with mean Y , both 

distr. have unknown variances, samples are independent, 

nX, nY – large.

H0: x = Y     Test statistic:

H0: x = Y against H1: x > Y

critical region 

H0: x = Y against H1: x  Y

critical region 

𝑈 =
ሜ𝑋 − ሜ𝑌

𝑆𝑋
2

𝑛𝑋
+
𝑆𝑌
2

𝑛𝑌

~𝑁 (0,1)

assuming H0. is 

true, for large 

samples 

approximately𝐶∗ = {𝑥 : 𝑈 (𝑥) > 𝑢1−𝛼}

𝐶∗ = {𝑥 : | 𝑈(𝑥)| > 𝑢1−𝛼/2}

𝑆𝑋
2 =

1

𝑛 𝑋−1
෍

𝑖=1

𝑛𝑋

(𝑋𝑖 − ሜ𝑋)2, 𝑆𝑌
2 =

1

𝑛 𝑌−1
෍

𝑖=1

𝑛𝑌

(𝑌𝑖 − ሜ𝑌)2



Model III – example (equality of means?)





Model IV: comparison of fractions for large 

samples, significance level 

Two IID samples from two-point distributions. X – number of 

successes in nX trials with prob of success pX, Y – number of 

successes in nY trials with prob of success pY. pX and pY

unknown, nX and nY large.

H0: pX = pY

Test statistic:

where

H0: pX = pY against H1: pX > pY

critical region 

H0: pX = pY against H1: pX  pY

critical region 

𝑈∗ =

𝑋
𝑛𝑋

−
𝑌
𝑛𝑌

𝑝∗(1 − 𝑝∗)
1
𝑛𝑋

+
1
𝑛𝑌

~𝑁 (0,1)

𝐶∗ = {𝑥 : 𝑈∗( 𝑥) > 𝑢1−𝛼}

𝐶∗ = {𝑥 : | 𝑈∗(𝑥)| > 𝑢1−𝛼/2}

𝑝∗ =
𝑋 + 𝑌

𝑛𝑥 + 𝑛𝑦

assuming H0. is 

true, for large 

samples 

approximately



Model IV – example (equality of probabilities?)





Tests for more than two populations

A naive approach:

pairwise tests for all pairs

But:

in this case, the type I error is higher than 

the significance level assumed for each 

simple test...



More populations

Assume we have k samples:

, and

▪ all Xi,j are independent (i=1,...,k, j=1,.., ni)

▪ Xi,j ~N(mi, 
2)

▪ we do not know m1, m2, ..., mk, nor 2

let n=n1+n2+...+nk

𝑋1,1, 𝑋1,2, . . . , 𝑋1,𝑛1 ,

𝑋2,1, 𝑋2,2, . . . , 𝑋2,𝑛2 ,

. . .
𝑋𝑘,1, 𝑋𝑘,2, . . . , 𝑋𝑘,𝑛𝑘



Test of the Analysis of Variance (ANOVA)

for significance level 

H0: 1 = 2 =... = k

H1:  H0     (i.e. not all i are equal)

A LR test; we get a test statistic:

with critical region

for  k=2 the ANOVA is equivalent to the two-sample t-test.

𝐹 =
σ𝑖=1
𝑘 𝑛𝑖( ሜ𝑋𝑖 − ሜ𝑋)2/(𝑘 − 1)

σ𝑖=1
𝑘 σ

𝑗=1
𝑛𝑖 (𝑋𝑖,𝑗 − ሜ𝑋𝑖)

2/(𝑛 − 𝑘)
~𝐹 (𝑘 − 1, 𝑛 − 𝑘)

ሜ𝑋𝑖 =
1

𝑛𝑖
෍

𝑗=1

𝑛𝑖

𝑋𝑖,𝑗 , ሜ𝑋 =
1

𝑛
෍

𝑖=1

𝑘

෍

𝑗=1

𝑛𝑖

𝑋𝑖,𝑗 =
1

𝑛
෍

𝑖=1

𝑘

𝑛𝑖 ሜ𝑋𝑖

𝐶∗ = {𝑥 : 𝐹 (𝑥) > 𝐹1−𝛼(𝑘 − 1, 𝑛 − 𝑘)}

assuming H0 is

true



ANOVA – interpretation

we have

– between group variance estimator

– within group variance estimator1

𝑛 − 𝑘
෍

𝑖=1

𝑘

෍

𝑗=1

𝑛𝑖

(𝑋𝑖,𝑗 − ሜ𝑋𝑖)
2

Sum of Squares

(SS)
Sum of Squares Between

(SSB)

Sum of Squares Within

(SSW)

1

𝑘 − 1
෍

𝑖=1

𝑘

𝑛𝑖( ሜ𝑋𝑖 − ሜ𝑋)2

෍

𝑖=1

𝑘

෍

𝑗=1

𝑛𝑖

(𝑋𝑖,𝑗 − ሜ𝑋)2 =෍

𝑖=1

𝑘

𝑛𝑖( ሜ𝑋𝑖 − ሜ𝑋)2 +෍

𝑖=1

𝑘

෍

𝑗=1

𝑛𝑖

(𝑋𝑖,𝑗 − ሜ𝑋𝑖)
2



ANOVA test – table

source of 

variability
sum of squares

degrees of 

freedom

value of the 

test statistic F

between 

groups
SSB k-1 –

within groups SSW n-k –

total SS n-1 F



ANOVA test – example

Yearly chocolate consumption in three cities: A, B, C

based on random samples of nA = 8, nB = 10, nC = 9 

consumers. Does consumption depend on the city?

=0.01

→ reject H0 (equality of means), 

consumption depends on city

A B C

sample mean 11 10 7

sample variance 3.5 2.8 3

ሜ𝑋 =
1

27
(11 ⋅ 8 + 10 ⋅ 10 + 7 ⋅ 9) = 9.3

𝑆𝑆𝐵 = (11 − 9.3)2 ⋅ 8 + (10 − 9.3)2 ⋅ 10 + (7 − 9.3)2 ⋅ 9 = 75.63
𝑆𝑆𝑊 = 3.5 ⋅ 7 + 2.8 ⋅ 9 + 3 ⋅ 8 = 73.7

𝐹 =
75.63/2

73.7/24
≈ 12.31 and 𝐹0.99(2,24) ≈ 5.61



ANOVA test – table – example 

source of 

variability
sum of squares

degrees of 

freedom

value of the 

test statistic F

between 

groups
75.63 2 –

within groups 73.7 24 –

total 149.33 26 12.31



Non-parametric tests

 we check whether a random variable fits a 

given distribution (goodness-of-fit tests).

 we check whether random variables have 

the same distribution

 we check whether variables/characteristics 

are independent (test of independence)



Kolmogorov goodness-of-fit test

Model: X1, X2, ..., Xn are an IID sample from 

distribution with CDF F.

H0: F = F0 (F0 specified)

H1:  H0   (i.e. the CDF is different)

If F0 is continuous, we use the statistic

where

and Fn(t) – n-th empirical CDF

𝐷𝑛 = sup𝑡∈𝑅 | 𝐹𝑛(𝑡) − 𝐹0(𝑡)| = max{𝐷𝑛
+, 𝐷𝑛

−}

𝐷𝑛
+ = max𝑖=1,...,𝑛

𝑖

𝑛
− 𝐹0(𝑥𝑖 : 𝑛) , 𝐷𝑛

− = max𝑖=1,...,𝑛 𝐹0(𝑥𝑖 : 𝑛) −
𝑖 − 1

𝑛



Kolmogorov goodness-of-fit test – cont.

The test: we reject H0 when:

Dn > c(, n)

for a critical value c(, n).

Theorem. If H0 is true, the distribution of Dn

does not depend on F0.

Problem: This distribution needs tables, for 

each different n.

Theorem. In the limit

the approximation may be used for n  100

𝑃( 𝑛𝐷𝑛 ≤ 𝑑)
𝑛→∞

𝐾(𝑑) = ෍

𝑘=−∞

+∞

(−1)𝑘𝑒−2𝑘
2𝑑2



Kolmogorov goodness-of-fit test – cont. (2)

Tables of the asymptotic distribution K(d)

1- 0.8 0.9 0.95 0.99

quantile of

K(d)
1.07 1.22 1.36 1.63

c(n, ) 

for n100
1.07/ 𝑛 1.22/ 𝑛 1.36/ 𝑛 1.63/ 𝑛



Kolmogorov goodness-of-fit test – example

Does the sample

0.4085   0.5267   0.3751   0.8329   0.0846

0.8306   0.6264   0.3086   0.3662   0.7952

come from a uniform distribution U(0,1)?

Source: W. Niemiro



Kolmogorov goodness-of-fit test – example cont. 

Dn = 0.2086      c(10; 0.9) = 0.369

→ no grounds to reject the null hypothesis that 

the distribution is uniform

Xi:10 (i-1)/10 i/10 i/10 - F(Xi:10) F(Xi:10)-(i-1)/10

0.0846 0 0.1 0.0154 0.0846

0.3086 0.1 0.2 -0.1086 0.2086

0.3662 0.2 0.3 -0.0662 0.1662

0.3751 0.3 0.4 0.0249 0.0751

0.4085 0.4 0.5 0.0915 0.0085

0.5267 0.5 0.6 0.0733 0.0267

0.6264 0.6 0.7 0.0736 0.0264

0.7952 0.7 0.8 0.0048 0.0952

0.8306 0.8 0.9 0.0694 0.0306

0.8329 0.9 1 0.1671 -0.0671



Chi-square goodness-of-fit test

Model: X1, X2, ..., Xn are an IID sample from a 

discrete distribution with k values (1, ..., k).

H0: the distribution probabilities are equal to

H1:  H0   (i.e. the distribution is different)

If the results of the experiment are

where Ni denotes the number of outcomes 

equal to i:

i 1 2 3 ... k

P(X=i) p1 p2 p3 ... pk

i 1 2 3 ... k

Ni N1 N2 N3 ... Nk

𝑁𝑖 =෍

𝑗=1

𝑛

1𝑋𝑗=𝑖

value 

labels



Chi-square goodness-of-fit test – cont. 

General form of the test:

here:

Theorem. If H0 is true, the distribution of the 2

statistic converges to a chi-square distr with 

k-1 degrees of freedom 2(k-1) for n→

Procedure: we reject H0 if 2 > c, where          

c= 2
1-(k-1) is a quantile of rank 1- from a chi-

square distr with k-1 degrees of freedom

𝜒2 =෍
(observed value − expected value)2

expected value

𝜒2 =෍
𝑖=1

𝑘 (𝑁𝑖 − 𝑛𝑝𝑖)
2

𝑛𝑝𝑖



Chi-square goodness-of-fit test – example

Is a die symmetric? For a significance level =0.05

n=150 tosses. Results:

H0: (N1, N2, N3, N4, N5, N6)

~Mult(150, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

H1:  H0

i 1 2 3 4 5 6

Ni 15 27 36 17 26 29

𝜒2 =
(15 − 25)2

25
+
(27 − 25)2

25
+
(36 − 25)2

25
+
(17 − 25)2

25
+
(26 − 25)2

25
+
(29 − 25)2

25
= 12.24

𝜒1−0.05
2 (5) ≈ 11.7 → we reject H0.

Source: W. Niemiro



Chi-square goodness-of-fit test – distribution 

with an unknown parameter. 

Model: X1, X2, ..., Xn are an IID sample from a 

discrete distribution with k values (1, ..., k).

H0: distribution probabilities are equal to

where  is an unknown parameter of 

dimension d.

H1:  H0   (i.e. the distribution is different)

i 1 2 3 ... k

P(X=i) p1() p2() p3() ... pk()



Chi-square goodness-of-fit test – distribution 

with an unknown parameter, cont. 

Test statistics are constructed like in the 

previous case, with the expected values 

calculated using ML estimators of the 

parameter . Only the number of degrees 

of freedom changes:

Theorem. If H0 is true, the distribution of the 2

statistic converges to a chi-square 

distribution with k-d-1 degrees of freedom 

2(k-d-1) for n→



Chi-square goodness-of-fit test – version for 

continuous distributions

Kolmogorov tests are better, but the chi-

square test may also be used

Model: X1, X2, ..., Xn are an IID sample from a 

continuous distribution.

H0: The distribution is given by F

H1:  H0   (i.e. the distribution is different)

It suffices to divide the range of values of the 

random variable into classes and count the 

observations. The expected values are known 

(result from F).Then: the chi-square test.



Chi-square goodness-of-fit test – practical 

notes

 The test should be used for large samples 

only.

 The expected counts can’t be too small 

(<5). If they are smaller, observations 

should be grouped.

 The classes in the „continuous” version 

may be chosen arbitrarily, but it is best if 

the theoretical probabilities are balanced.




