Mathematical Statistics

Anna Janicka

Lecture XII, 19.05.2022

HYPOTHESIS TESTING IV:
Parametric Tests: Comparing Two or More Populations

Plan for today

1. Parametric LR tests for one population cont.
2. Asymptotic properties of the LR test
3. Parametric LR tests for two populations
4. Comparing more than two populations - ANOVA

Notation

$x_{\text {something }}$ always means a quantile of rank something

Model III: comparing the mean

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distribution with mean μ and variance (unknown), n - large.
$H_{0}: \mu=\mu_{0}$
Test statistic:

$$
T=\frac{\bar{X}-\mu_{0}}{S} \sqrt{n}
$$

has, for large n, an approximate distribution $N(0,1)$ $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$
critical region $\quad C^{*}=\left\{x: T(x)>u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<\mu_{0}$
critical region $\quad C^{*}=\left\{x: T(x)<u_{\alpha}=-u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$
critical region $\quad C^{*}=\left\{x:|T(x)|>u_{1-\alpha / 2}\right\}$

Model IV: comparing the fraction

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a two-point distribution, n - large.

$$
P_{p}(X=1)=p=1-P_{p}(X=0)
$$

$H_{0}: p=p_{0}$

$$
U^{*}=\frac{\bar{X}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)}} \sqrt{n}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)}} \sqrt{n}
$$

has an approximate distribution $N(0,1)$ for large n $H_{0}: p=p_{0}$ against $H_{1}: p>p_{0}$ critical region $\quad C^{*}=\left\{x: U^{*}(x)>u_{1-\alpha}\right\}$ $H_{0}: p=p_{0}$ against $H_{1}: p<p_{0}$ critical region $\quad C^{*}=\left\{x: U^{*}(x)<u_{\alpha}=-u_{1-\alpha}\right\}$
$H_{0}: p=p_{0}$ against $H_{1}: p \neq p_{0}$
critical region $\quad C^{*}=\left\{x:\left|U^{*}(x)\right|>u_{1-\alpha / 2}\right\}$

Model IV: example

We toss a coin 400 times. We get 180 heads. Is the coin symmetric?

$$
H_{0}: p=1 / 2 \quad U^{*}=\frac{(180 / 400-1 / 2)}{\sqrt{1 / 2(1-1 / 2)}} \sqrt{400}=-2
$$

for $\alpha=0.05$ and $H_{1}: p \neq 1 / 2$ we have $u_{0.975}=1.96 \rightarrow$ we reject H_{0} for $\alpha=0.05$ and $H_{1}: p<1 / 2$ we have $u_{0.05}=-u_{0.95}=-1.64$ \rightarrow we reject H_{0}
for $\alpha=0.01$ and $H_{1}: p \neq 1 / 2$ we have $u_{0.995}=2.58$ \rightarrow we do not reject H_{0} for $\alpha=0.01$ and $H_{1}: p<1 / 2$ we have $u_{0.01}=-u_{0.99}=-2.33$ \rightarrow we do not reject H_{0} p 2 value for $H_{1}: p \neq 1 / 2: 0.044$ p-value for $H_{1}: p<1 / 2: 0.022$

Likelihood ratio test for composite hypotheses

 - reminder$X \sim P_{\theta},\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ - family of distributions We are testing $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ such that $\Theta_{0} \cap \Theta_{1}=\varnothing, \Theta_{0} \cup \Theta_{1}=\Theta$
Let
$H_{0}: X \sim f_{0}\left(\theta_{0}, \cdot\right)$ for some $\theta_{0} \in \Theta_{0}$.
$H_{1}: X \sim f_{1}\left(\theta_{1}, \cdot\right)$ for some $\theta_{1} \in \Theta_{1}$,
where f_{0} and f_{1} are densities (for $\theta \in \Theta_{0}$ and θ $\in \Theta_{1}$, respectively)

Likelihood ratio test for composite hypotheses - reminder (cont.)

Test statistic:

$$
\tilde{\lambda}=\frac{\sup _{\theta \in \Theta} f(\theta, X)}{\sup _{\theta_{0} \in \Theta_{0}} f_{0}\left(\theta_{0}, X\right)}
$$

or $\tilde{\lambda}=\frac{f(\hat{\theta}, X)}{f_{0}\left(\hat{\theta}_{0}, X\right)}$
where $\hat{\theta}, \hat{\theta}_{0}$ are the ML estimators for the model without restrictions and for the null model.
We reject H_{0} if $\tilde{\lambda}>\tilde{c}$ for a constant \tilde{c}.

Asymptotic properties of the LR test

We consider two nested models, we test
$H_{0}: h(\theta)=0$ against $H_{1}: h(\theta) \neq 0$
Under the assumption that
$\square h$ is a nice function
$\square \Theta$ is a d-dimensional set
$\square \Theta_{0}=\{\theta: h(\theta)=0\}$ is a $d-p$ dimensional set
Theorem: If H_{0} is true, then for $n \rightarrow \infty$ the distribution of the statistic $2 \ln \tilde{\lambda}$ converges to a chi-square distribution with p degrees of freedom

Asymptotic properties of the LR test - example

Exponential model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\operatorname{Exp}(\theta)$.
We test $H_{0}: \theta=1$ against $H_{1}: \theta \neq 1$

$$
\operatorname{MLE}(\theta)=\hat{\theta}=1 / \bar{X}
$$

$$
\tilde{\lambda}=\frac{\Pi f_{\hat{\theta}}\left(x_{i}\right)}{\Pi f_{1}\left(x_{i}\right)}=\frac{\frac{1}{\bar{X}^{n}} \exp \left(-\frac{1}{\bar{X}} \Sigma x_{i}\right)}{\exp \left(-\Sigma x_{i}\right)}=\frac{1}{\overline{\bar{X}}^{n}} \exp (n(\bar{X}-1))
$$

then:

$$
\tilde{\lambda}>\tilde{c} \Leftrightarrow 2 \ln \tilde{\lambda}>2 \ln \tilde{c}
$$

from Theorem: $\quad 2 \ln \tilde{\lambda}=2 n((\bar{X}-1)-\ln \bar{X}) \xrightarrow{D} \chi^{2}(1)$ for a sign. level $\alpha=0.05$ we have $\chi_{0.95}^{2}(1) \approx 3.84 \approx 2 \ln \tilde{c}$ so we reject H_{0} in favor of H_{1} if $\quad \tilde{\lambda}>e^{3.84 / 2}$

Comparing two or more populations

We want to know if populations studied are "the same" in certain aspects:
\square parametric tests: we check the equality of certain distribution parameters
\square nonparametric tests: we check whether distributions are the same

Model I: comparison of means, variance known, significance level α
$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr $\mathrm{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, $\sigma_{X}{ }^{2}, \sigma_{Y}{ }^{2}$ are known, samples are independent
$H_{0}: \mu_{x}=\mu_{Y}$

$$
U=\quad \bar{X}-\bar{Y}
$$

Test statistic:

$$
U=\frac{X-r}{\sqrt{\sigma_{v,}^{2} \sigma_{v,}^{2}}} \sim N(0,1)
$$

$$
\sqrt{\sigma_{X}^{2} / n_{X}+\sigma_{Y}^{2} / n_{Y}}
$$

$H_{0}: \mu_{x}=\mu_{\mathrm{r}}$ against $H_{1}: \mu_{x}>\mu_{Y}$
assuming H_{0} is true
critical region

$$
C^{*}=\left\{x: U(x)>u_{1-\alpha}\right\}
$$

$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{Y}$
critical region $\quad C^{*}=\left\{x:|U(x)|>u_{1-\alpha / 2}\right\}$

Model I - comparison of means. Example

$X_{1}, X_{2}, \ldots, X_{10}$ are an IID sample from distr $\mathrm{N}\left(\mu_{\mathrm{x}}, 11^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{10}$ are an IID sample from distr $\mathrm{N}\left(\mu_{\gamma}, 13^{2}\right)$ Based on the sample:

$$
\bar{X}=501, \bar{Y}=498
$$

Are the means equal, at significance level 0.05 ? $H_{0}: \mu_{x}=\mu_{\curlyvee}$ against $H_{1}: \mu_{x} \neq \mu_{\curlyvee}$

$$
U=\frac{501-498}{\sqrt{\frac{13^{2}}{10}+\frac{11^{2}}{10}}} \approx 0.557
$$

we have: $u_{0.975} \approx 1.96$.
$=|0.557|<1.96 \rightarrow$ no grounds to reject H_{0}

Model II: comparison of means, variance unknown but assumed equal, significance level α
$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr $\mathrm{N}\left(\mu_{\mathrm{x}}, \sigma^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma^{2}\right)$ with σ^{2} unknown, samples are independent $H_{0}: \mu_{X}=\mu_{Y}$ Test statistic:

$$
\begin{aligned}
& T=\frac{\bar{X}-\bar{Y}}{\sqrt{\left(n_{x}-1\right) S_{X}^{2}+\left(n_{Y}-1\right) S_{Y}^{2}}} \sqrt{\frac{n_{X} n_{Y}}{n_{X}+n_{Y}}\left(n_{X}+n_{Y}-2\right)} \sim t\left(n_{X}+n_{Y}-2\right) \\
& H_{0}: \mu_{X}=\mu_{Y} \text { against } H_{1}: \mu_{X}>\mu_{Y}
\end{aligned} \begin{aligned}
& \text { Assuming } H_{0} \text { is } \\
& \text { true }
\end{aligned}
$$

critical region $\quad C^{*}=\left\{x: T(x)>t_{1-\alpha}\left(n_{x}+n_{y}-2\right)\right\}$
$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{Y}$ critical region $C^{*}=\left\{x:|T(x)|>t_{1-\alpha / 2}\left(n_{x}+n_{y}-2\right)\right\}$

$$
s_{X}^{2}=\frac{1}{n_{x}-1} \sum_{i=1}^{n_{x}}\left(X_{i}-\bar{x}\right)^{2}, s_{y}^{2}=\frac{1}{n_{y}-1} \sum_{i=1}^{n_{y}}\left(x_{i}-\bar{x}\right)^{2}
$$

Model II: comparison of means, variance unknown but assumed equal, cont.

$$
T=\frac{\bar{X}-\bar{Y}}{\sqrt{\left(n_{x}-1\right) S_{X}^{2}+\left(n_{Y}-1\right) S_{Y}^{2}}} \sqrt{\frac{n_{X} n_{Y}}{n_{X}+n_{Y}}\left(n_{X}+n_{Y}-2\right)} \sim t\left(n_{X}+n_{Y}-2\right)
$$

can be rewritten as

$$
T=\frac{\bar{X}-\bar{Y}}{S_{*} \sqrt{\frac{1}{n_{X}}+\frac{1}{n_{Y}}}} \sim t\left(n_{X}+n_{Y}-2\right)
$$

where

$$
S_{*}^{2}=\frac{\left(n_{x}-1\right) S_{X}^{2}+\left(n_{Y}-1\right) S_{Y}^{2}}{n_{x}+n_{y}-2}
$$

is an estimator of the variance σ^{2} based on the two samples jointly

Model II: comparison of variances, significance level α

$X_{1}, X_{2}, \ldots, X_{n x}$ are an IID sample from distr $\mathrm{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$, $\sigma_{X}{ }^{2}, \sigma_{Y}{ }^{2}$ are unknown, samples are independent
$H_{0}: \sigma_{X}=\sigma_{Y}$
Test statistic:

$$
\begin{aligned}
& F=\frac{S_{X}^{2}}{S_{Y}^{2}} \sim F \\
& \therefore \sigma_{X}>\sigma_{Y}
\end{aligned}
$$

critical region $\quad C^{*}=\left\{x: F(x)>F_{1-\alpha}\left(n_{X}-1, n_{Y}-1\right)\right\}$ $H_{0}: \sigma_{X}=\sigma_{Y}$ against $H_{1}: \sigma_{X} \neq \sigma_{Y}$
critical region $\quad C^{*}=\left\{x: F(x)<F_{\alpha / 2}\left(n_{X}-1, n_{Y}-1\right)\right.$

$$
\left.\vee F(x)>F_{1-\alpha / 2}\left(n_{X}-1, n_{Y}-1\right)\right\}
$$

$$
S_{X}^{2}=\frac{1}{n_{X}-1} \sum_{i=1}^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}, S_{Y}^{2}=\frac{1}{n_{Y}-1} \sum_{i=1}^{n_{Y}}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Model II: comparison of means, variances unknown and no equality assumption

$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr $\mathrm{N}\left(\mu_{\mathrm{x}}, \sigma_{X}^{2}\right)$, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr $\mathrm{N}\left(\mu_{Y}, \sigma_{Y}{ }^{2}\right)$, $\sigma_{X}{ }^{2}, \sigma_{Y}{ }^{2}$ are unknown, samples independent $H_{0}: \mu_{X}=\mu_{Y}$
The test statistic would be very simple, but:
$\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_{X}^{2}}{n_{X}}+\frac{S_{Y}^{2}}{n_{Y}}}} \sim ? ?$

It isn't possible to design a test statistic such that the distribution does not depend on $\sigma_{X}{ }^{2}$ and $\sigma_{Y}{ }^{2}$ (values)...

Model III: comparison of means for large samples, significance level α

$X_{1}, X_{2}, \ldots, X_{n X}$ are an IID sample from distr. with mean μ_{X}, $Y_{1}, Y_{2}, \ldots, Y_{n Y}$ are an IID sample from distr. with mean μ_{Y}, both distr. have unknown variances, samples are independent, n_{X}, n_{Y} - large.
$H_{0}: \mu_{X}=\mu_{Y}$ Test statistic:

$$
U=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{S_{X}^{2}}{n_{X}}+\frac{S_{Y}^{2}}{n_{Y}}}} \sim N(0,1)
$$

critical region

$$
C^{*}=\left\{x: U(x)>u_{1-\alpha}\right\}
$$

$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x}>\mu_{Y}$
$H_{0}: \mu_{x}=\mu_{Y}$ against $H_{1}: \mu_{x} \neq \mu_{\curlyvee}$
critical region

$$
C^{*}=\left\{x:|U(x)|>u_{1-\alpha / 2}\right\}
$$

$$
S_{X}^{2}=\frac{1}{n_{y}-1} \sum^{n_{X}}\left(X_{i}-\bar{X}\right)^{2}, S_{Y}^{2}=\frac{1}{n_{v}-1} \sum^{n_{Y}}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Model III - example (equality of means?)

1167 students take part in a probability calculus exam. Is attending lectures profitable? $(\alpha=0.05)$
Among those, who participated 3 times (93 students):

$$
\text { mean }=3, \text { variance }=0.70 ;
$$

Among those, who participated less than 3 times (74 students): mean $=2.72$, variance $=0.69$.
Value of the test statistic

$$
U=\frac{3-2.72}{\sqrt{0.70 / 93+0.69 / 74}} \approx 2.13
$$

Model IV: comparison of fractions for large samples, significance level α

Two IID samples from two-point distributions. X - number of successes in n_{X} trials with prob of success p_{X}, Y - number of successes in n_{Y} trials with prob of success $p_{Y} . p_{X}$ and p_{Y} unknown, n_{X} and n_{Y} large.

$$
H_{0}: p_{X}=p_{Y}
$$

Test statistic:

$$
\begin{aligned}
& U^{*}=\frac{\frac{X}{n_{X}}-\frac{Y}{n_{Y}}}{\sqrt{p_{*}\left(1-p_{*}\right)\left(\frac{1}{n_{X}}+\frac{1}{n_{Y}}\right)}} \sim N \\
& \text { st } H_{1}: p_{X}>p_{Y} \\
& \text { ion } \quad C^{*}=\left\{x: U^{*}(x)>u_{1-\alpha}\right\}
\end{aligned}
$$

$H_{0}: p_{X}=p_{Y}$ against $H_{1}: p_{X} \neq p_{Y}$
critical region

$$
C^{*}=\left\{x:\left|U^{*}(x)\right|>u_{1-\alpha / 2}\right\}
$$

Model IV - example (equality of probabilities?)

1167 students take part in a probability calculus exam. Is attending lectures profitable? $(\alpha=0.05)$
Among those, who participated 3 times (93 students): 64 passed (68.8\%);
Among those, who participated less than 3 times (74 students): 36 passed (48.6\%).
Value of the test statistic

$$
U=\frac{0.688-0.486}{\sqrt{100 / 167 \cdot 67 / 167 \cdot(1 / 93+1 / 74)}} \approx 2,55
$$

Tests for more than two populations

A naive approach:
pairwise tests for all pairs
But:
in this case, the type I error is higher than the significance level assumed for each simple test...

More populations

Assume we have k samples:

$$
\begin{aligned}
& X_{1,1}, X_{1,2}, \ldots, X_{1, n_{1}}, \\
& X_{2,1}, X_{2,2}, \ldots, X_{2, n_{2}} \\
& \ldots \\
& X_{k, 1}, X_{k, 2}, \ldots, X_{k, n_{k}}, \text { and }
\end{aligned}
$$

- all $X_{i, j}$ are independent $\left(i=1, \ldots, k, j=1, . ., n_{i}\right)$
- $X_{i, j} \sim N\left(m_{i}, \sigma^{2}\right)$
- we do not know $m_{1}, m_{2}, \ldots, m_{k}$, nor σ^{2}

$$
\text { let } n=n_{1}+n_{2}+\ldots+n_{k}
$$

Test of the Analysis of Variance (ANOVA) for significance level α

$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
$H_{1}: \neg H_{0} \quad$ (i.e. not all μ_{i} are equal)
A LR test; we get a test statistic:

$$
F=\frac{\sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2} /(n-k)} \sim F(k-1, n-k)
$$

with critical region

$$
\begin{aligned}
& C^{*}=\left\{x: F(x)>F_{1-\alpha}(k-1, n-k)\right\} \\
& \qquad \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i, j}, \bar{X}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{i, j}=\frac{1}{n} \sum_{i=1}^{k} n_{i} \bar{X}_{i}
\end{aligned}
$$

for $k=2$ the ANOVA is equivalent to the two-sample t-test.

ANOVA - interpretation

we have $h_{n_{i}}{ }^{2}$

Sum of Squares (SS)

Sum of Squares Between (SSB)

Sum of Squares Within (SSW)
$\frac{1}{k-1} \sum_{i_{\bar{k}}=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}$ - between group variance estimator
$\frac{1}{n-k} \sum_{i=1} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2}$ - within group variance estimator

ANOVA test - table

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	SSB	$\mathrm{k}-1$	-
within groups	SSW	$\mathrm{n}-\mathrm{k}$	-
total	SS	$\mathrm{n}-1$	F

ANOVA test - example

Yearly chocolate consumption in three cities: A, B, C based on random samples of $n_{A}=8, n_{B}=10, n_{C}=9$ consumers. Does consumption depend on the city?

	A	B	C
sample mean	11	10	7
sample variance	3.5	2.8	3

$\bar{X}=\frac{1}{27}(11 \cdot 8+10 \cdot 10+7 \cdot 9)=9.3$
$S S B=(11-9.3)^{2} \cdot 8+(10-9.3)^{2} \cdot 10+(7-9.3)^{2} \cdot 9=75.63$
$S S W=3.5 \cdot 7+2.8 \cdot 9+3 \cdot 8=73.7$
$F=\frac{75.63 / 2}{73.7 / 24} \approx 12.31$ and $F_{0.99}(2,24) \approx 5.61$ \rightarrow reject H_{0} (equality of means),

ANOVA test - table - example

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	75.63	2	-
within groups	73.7	24	-
total	149.33	26	12.31

2
Faculty of Economic Sciences

