Mathematical Statistics

Anna Janicka

Lecture XI, 12.05.2022

HYPOTHESIS TESTING III:

LR TEST FOR COMPOSITE HYPOTHESES

EXAMPLES OF ONE-SAMPLE TESTS

Plan for today

- LR test for composite hypotheses
- 2. Examples of LR tests:
 - Model I: One- and two-sided tests for the mean in the normal model, σ^2 known
 - Model II: One- and two-sided tests for the mean in the normal model, σ^2 unknown
 - + One- and two-sided tests for the variance
 - Model III: Tests for the mean, large samples
 - Model IV: Tests for the fraction, large samples

Testing simple hypotheses – reminder

We observe X. We want to test

$$H_0$$
: $\theta = \theta_0$ against H_1 : $\theta = \theta_1$.

(two simple hypotheses)

We can write it as:

$$H_0$$
: $X \sim f_0$ against H_1 : $X \sim f_1$,

where f_0 and f_1 are densities of distributions defined by θ_0 and θ_1 (i.e. P_0 and P_1)

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma – reminder

H₀:
$$X \sim f_0$$
 against H_1 : $X \sim f_1$
Let
$$C^* = \left\{ x \in X : \frac{f_1(x)}{f_0(x)} > c \right\}$$
such that $P_0(C^*) = \alpha$ and $P_1(C^*) = 1 - \beta$
Then, for any $C \subseteq \mathcal{X}$:
if $P_0(C) \leq \alpha$, then $P_1(C) \leq 1 - \beta$.

(i.e.: the test with critical region C^* is the most powerful test for testing H_0 against H_1)

Neyman-Pearson Lemma – Example 1 reminder

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), σ^2 is known

The most powerful test for

$$H_0$$
: $\mu = 0$ against H_1 : $\mu = 1$.

At significance level α :

$$C^* = \{(x_1, x_2, \dots, x_n) : \overline{X} > u_{1-\alpha}\sigma / \sqrt{n} \}$$

If we had

$$H_0$$
: $\mu = 0$ against H_1 : $\mu = -1$, then

$$C_1^* = \left\{ (x_1, x_2, \dots, x_n) : \overline{X} < \frac{u_{1-\alpha}\sigma}{\sqrt{n}} \right\}$$

Neyman-Pearson Lemma – Example 1 cont.

Power of the test

$$P_{1}(C^{*}) = P\left(\bar{X} > \frac{1.645\sigma}{\sqrt{n}} | \mu = 1\right) = \dots$$
$$= 1 - \Phi\left(\frac{1.645 - \mu_{1} \cdot \sqrt{n}}{\sigma}\right) \approx 0.91$$

If we change α , μ_1 , n – the power of the test....

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for H_1 : $\mu > 0$ and for

$$H_0$$
: $\mu \le 0$ against H_1 : $\mu > 0$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing

$$H_0$$
: $\mu \le \mu_0$ against H_1 : $\mu > \mu_0$

Note the change of direction of the inequality in the condition when testing

$$H_0$$
: $\mu \ge \mu_0$ against H_1 : $\mu < \mu_0$

Neyman-Pearson Lemma – Example 2

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from distr $\exp(\lambda)$, n = 10.

MP test for

$$H_0$$
: $\lambda = \frac{1}{2}$ against H_1 : $\lambda = \frac{1}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0$.

Neyman-Pearson Lemma – Example 2'

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from distr $\exp(\lambda)$, n = 10.

MP test for

$$H_0$$
: $\lambda = \frac{1}{2}$ against H_1 : $\lambda = \frac{3}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0$.

Example 2 cont.

The test
$$C^* = \{(x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \}$$

is UMP for H_0 : $\lambda \geq \frac{1}{2}$ against H_1 : $\lambda < \frac{1}{2}$

The test

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

is UMP for H_0 : $\lambda \le \frac{1}{2}$ against H_1 : $\lambda > \frac{1}{2}$

Likelihood ratio test for composite hypotheses

 $X \sim P_{\theta}$, $\{P_{\theta} : \theta \in \Theta\}$ – family of distributions

We are testing H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$ such that $\Theta_0 \cap \Theta_1 = \emptyset$, $\Theta_0 \cup \Theta_1 = \Theta$

Let

 H_0 : $X \sim f_0(\theta_0, \cdot)$ for some $\theta_0 \in \Theta_0$.

 H_1 : $X \sim f_1(\theta_1, \cdot)$ for some $\theta_1 \in \Theta_1$,

where f_0 and f_1 are densities (for $\theta \in \Theta_0$ and $\theta \in \Theta_1$, respectively)

Likelihood ratio test for composite hypotheses – cont.

Test statistic:
$$\lambda = \frac{\sup_{\theta_1 \in \Theta_1} f_1(\theta_1, X)}{\sup_{\theta_0 \in \Theta_0} f_0(\theta_0, X)}$$

or
$$\lambda = \frac{f_1(\hat{\theta}_1, X)}{f_0(\hat{\theta}_0, X)}$$

where $\hat{\theta}_0$, $\hat{\theta}_1$ are MLE for the null and alternative hypothesis models

We reject H_0 if $\lambda > c$ for a constant c (determined according to significance level)

Likelihood ratio test for composite hypotheses – justification

Just like in the Neyman-Pearson Lemma, we compare the "highest chance of obtaining observation X, when the alternative is true" to the "highest chance of obtaining observation X, when the null is true"; we reject the null hypothesis in favor of the alternative if this ratio is very unfavorable for the null.

Likelihood ratio test for composite hypotheses

alternative version

Test statistic:

$$\tilde{\lambda} = \frac{\sup_{\theta \in \Theta} f(\theta, X)}{\sup_{\theta_0 \in \Theta_0} f_0(\theta_0, X)}$$

or
$$\tilde{\lambda} = \frac{f(\hat{\theta}, X)}{f_0(\hat{\theta}_0, X)}$$

where $\hat{\theta}$, $\hat{\theta}_0$ are the ML estimators for the model without restrictions and for the null model, respectively.

We reject H_0 if $\tilde{\lambda} > \tilde{c}$ for a constant \tilde{c} .

Likelihood ratio test for composite hypothesesproperties

For some models with composite hypotheses the UMPT *does not exist* (so the LR test will not be UMP because there is no such test)

e.g. testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ if the family of distributions has a *monotonic LR property*, i.e. $f_1(x)/f_0(x)$ is an increasing function of a statistic T(x) for any f_0 and f_1 corresponding to parameters $\theta_0 < \theta_1$.

In order to have UMPT for H_0 : $\theta = \theta_0$ against H_1 : $\theta > \theta_0$ we would need a critical region of the type T(x)>c, and to have a UMPT for H_0 : $\theta = \theta_0$ against H_1 : $\theta < \theta_0$ we would need a critical region of the type T(x)< c, so it is impossible to find a UMPT for H_1 : $\theta \neq \theta_0$.

Likelihood ratio test: special cases

The exact form of the test depends on the distribution.

In many cases, finding the distribution is hard/complicated (in many such cases, we use the asymptotic properties of the LR test instead of precise formulae)

Notation

*x*_{something} **always** means a quantile of rank something

Model I: comparing the mean

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), where σ^2 is **known**

$$H_0$$
: $\mu = \mu_0$
Test statistic:
$$U = \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \sim N \ (0,1)$$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu > \mu_0$ critical region $C^* = \{x : U(x) > u_{1-\alpha}\}$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu < \mu_0$ critical region $C^* = \{x : U(x) < u_\alpha = -u_{1-\alpha}\}$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$

critical region
$$C^* = \{x : |U(x)| > u_{1-\alpha/2}\}$$

Model I: example

Let $X_1, X_2, ..., X_{10}$ be an IID sample from N(μ , 1²): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is μ = 0? (for α = 0.05)

In the sample: mean = -0.43, $\frac{\text{variance}}{\text{variance}} = \frac{0.92}{\text{variance}}$

Test statistic: $U = \frac{-0.43 - 0}{1} \sqrt{10} \approx -1.36$

 H_0 : $\mu = 0$ against H_1 : $\mu \neq 0$, $u_{0.975} \approx 1.96$ (p-value ≈ 0.172)

 H_0 : $\mu = 0$ against H_1 : $\mu < 0$, $u_{0.05} \approx -1.64$ (p-value ≈ 0.086)

 H_0 : $\mu = 0$ against H_1 : $\mu > 0$, $u_{0.95} \approx 1.64$ (p-value ≈ 0.914)

→ in none of these cases are there grounds to reject

 H_0 for $\alpha = 0.05$

 \rightarrow but we would reject H_0 : $\mu = 0$ in favor of H_4 : $\mu < 0$ for $\alpha = 0.1$

Model II: comparing the mean

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), where σ^2 is **unknown**

H₀:
$$\mu = \mu_0$$

Test statistic:
$$T = \frac{\bar{X} - \mu_0}{S} \sqrt{n} \sim t (n - 1)$$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu > \mu_0$ critical region $C^* = \{x : T(x) > t_{1-\alpha}(n-1)\}$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu < \mu_0$ critical region $C^* = \{x : T(x) < t_\alpha(n-1)\}$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$

critical region $C^* = \{x : |T(x)| > t_{1-\alpha/2}(n-1)\}$

Model II: example (mean)

Let $X_1, X_2, ..., X_{10}$ be an IID sample from N(μ, σ^2): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is μ = 0? (for α = 0.05)

In the sample: mean = -0.43, variance = 0.92

Test statistic: $U = \frac{-0.43 - 0}{\sqrt{0.92}} \sqrt{10} \approx -1.42$

 H_0 : $\mu = 0$ vs H_1 : $\mu \neq 0$, $t_{0.975}(9) \approx 2.26$ (p-value ≈ 0.188)

 H_0 : $\mu = 0$ vs H_1 : $\mu < 0$, $t_{0.05}(9) \approx -1.83$ (p-value ≈ 0.094)

 H_0 : $\mu = 0$ vs H_1 : $\mu > 0$, $t_{0.95}$ (9) ≈ 1.83 (p-value ≈ 0.906)

 \rightarrow in none of these cases are there grounds to reject H_0 for $\alpha = 0.05$

 \rightarrow but we would reject H_0 : $\mu = 0$ in favor of H_4 : $\mu < 0$ for $\alpha = 0.1$

Model II: comparing the variance

Normal model: $X_1, X_2, ..., X_n$ are an IID sample from $N(\mu, \sigma^2)$, where σ^2 is **unknown**

$$H_0$$
: $\sigma = \sigma_0$

Test statistic:

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2 (n-1)$$

$$H_0$$
: $\sigma = \sigma_0$ against H_1 : $\sigma > \sigma_0$

critical region
$$C^* = \{x : \chi^2(x) > \chi^2_{1-\alpha}(n-1)\}$$

$$H_0$$
: $\sigma = \sigma_0$ against H_1 : $\sigma < \sigma_0$

critical region

$$C^* = \{x : \chi^2(x) < \chi^2_\alpha(n-1)\}\$$

$$H_0$$
: $\sigma = \sigma_0$ against H_1 : $\sigma \neq \sigma_0$

critical region
$$C^* = \{x : \chi^2(x) < \chi^2_{\alpha/2}(n-1)$$

Model II: example (variance)

Let $X_1, X_2, ..., X_{10}$ be an IID sample from N(μ, σ^2): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is σ =1? (for α = 0.05)

In the sample: variance = 0.92 $\chi^2 = \frac{9 \cdot 0.92}{1} \approx 8.28$

 H_0 : $\sigma = 1$ against H_1 : $\sigma > 1$ $\chi^2_{0.95} \approx 16.92$

*H*₀: $\sigma = 1$ against *H*₁: $\sigma < 1$ $\chi^2_{0.05} \approx 3.33$

 H_0 : $\sigma = 1$ against H_1 : $\sigma \neq 1$ $\chi^2_{0.025} \approx 2.70$; $\chi^2_{0.975} \approx 19.02$

 \rightarrow in none of these cases are there grounds to reject H_0 (for $\alpha = 0.05$)

Model III: comparing the mean

Asymptotic model: X_1 , X_2 , ..., X_n are an IID sample from a distribution with mean μ and variance (unknown), n – large.

$$H_0$$
: $\mu = \mu_0$
Test statistic:
$$T = \frac{\bar{X} - \mu_0}{S} \sqrt{n}$$

has, for large n, an approximate distribution N(0,1)

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu > \mu_0$ critical region $C^* = \{x : T(x) > u_{1-\alpha}\}$

H₀:
$$\mu = \mu_0$$
 against H₁: $\mu < \mu_0$
critical region
$$C^* = \{x : T(x) < u_\alpha = -u_{1-\alpha}\}$$

$$H_0$$
: $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$

Model IV: comparing the fraction

Asymptotic model: X_1 , X_2 , ..., X_n are an IID sample from a two-point distribution, n – large.

$$P_p(X = 1) = p = 1 - P_p(X = 0)$$

H₀:
$$p = p_0$$

Test statistic: $U^* = \frac{\bar{X} - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$

has an approximate distribution N(0,1) for large n

$$H_0$$
: $p = p_0$ against H_1 : $p > p_0$ critical region $C^* = \{x : U^*(x) > u_{1-\alpha}\}$

$$H_0$$
: $p = p_0$ against H_1 : $p < p_0$ critical region $C^* = \{x : U^*(x) < u_\alpha = -u_{1-\alpha}\}$

$$H_0$$
: $p = p_0$ against H_1 : $p \neq p_0$

Model IV: example

We toss a coin 400 times. We get 180 heads. Is the coin symmetric?

$$H_0$$
: $p = \frac{1}{2}$ $U^* = \frac{(180/400 - 1/2)}{\sqrt{1/2(1 - 1/2)}} \sqrt{400} = -2$

for α = 0.05 and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.975}$ = 1.96 \rightarrow we reject H_0 for α = 0.05 and H_1 : $p < \frac{1}{2}$ we have $u_{0.05}$ = $-u_{0.95}$ = -1.64 \rightarrow we reject H_0

for $\alpha = 0.01$ and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.995} = 2.58$ \rightarrow we do not reject H_0

for $\alpha = 0.01$ and H_1 : $p < \frac{1}{2}$ we have $u_{0.01} = -u_{0.99} = -2.33$

 \rightarrow we do not reject H_0

p-value for H_1 : $p \neq \frac{1}{2}$: 0.044

p-value for H_1 : $p < \frac{1}{2}$: 0.022

