Mathematical Statistics

Anna Janicka

Lecture XI, 12.05.2022

HYPOTHESIS TESTING III:
LR TEST FOR COMPOSITE HYPOTHESES EXAMPLES OF ONE-SAMPLE TESTS

Plan for today

1. LR test for composite hypotheses
2. Examples of $L R$ tests:

- Model I: One- and two-sided tests for the mean in the normal model, σ^{2} known
- Model II: One- and two-sided tests for the mean in the normal model, σ^{2} unknown
+ One- and two-sided tests for the variance
- Model III: Tests for the mean, large samples
- Model IV: Tests for the fraction, large samples

Testing simple hypotheses - reminder

We observe X. We want to test

$$
H_{0}: \theta=\theta_{0} \text { against } H_{1}: \theta=\theta_{1} .
$$

(two simple hypotheses)
We can write it as:

$$
H_{0}: X \sim f_{0} \text { against } H_{1}: X \sim f_{1}
$$

where f_{0} and f_{1} are densities of distributions defined by θ_{0} and θ_{1} (i.e. P_{0} and P_{1})

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma - reminder

$H_{0}: X \sim f_{0}$ against $H_{1}: X \sim f_{1}$
Let

$$
C^{*}=\left\{x \in X: \frac{f_{1}(x)}{f_{0}(x)}>c\right\}
$$

such that $P_{0}\left(C^{*}\right)=\alpha$ and $P_{1}\left(C^{*}\right)=1-\beta$
Then, for any $C \subseteq \mathcal{X}$:
if $P_{0}(C) \leq \alpha$, then $P_{1}(\mathrm{C}) \leq 1-\beta$.
(i.e.: the test with critical region C^{*} is the most powerful test for testing H_{0} against H_{1})

Neyman-Pearson Lemma - Example 1 reminder

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right), \sigma^{2}$ is known
The most powerful test for
$H_{0}: \mu=0$ against $H_{1}: \mu=1$.

At significance level α :

If we had

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \bar{X}>^{u_{1-\alpha} \sigma} / \sqrt{n}\right\}
$$

$H_{0}: \mu=0$ against $H_{1}: \mu=-1$, then

$$
C_{1}^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \bar{X}<u_{1-\alpha} \sigma / \sqrt{n}\right\}
$$

Neyman-Pearson Lemma - Example 1 cont.

Power of the test

$$
\begin{aligned}
P_{1}\left(C^{*}\right) & =P(\bar{X}>1.645 \sigma / \sqrt{n} \mid \mu=1)=\ldots \\
& =1-\Phi\left(1.645-\mu_{1} \cdot \sqrt{n} / \sigma\right) \quad \approx 0.91
\end{aligned}
$$

If we change α, μ_{1}, n - the power of the test....

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for $H_{1}: \mu>0$ and for

$$
H_{0}: \mu \leq 0 \text { against } H_{1}: \mu>0
$$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing
$H_{0}: \mu \leq \mu_{0}$ against $H_{1}: \mu>\mu_{0}$
Note the change of direction of the inequality in the condition when testing

$$
H_{0}: \mu \geq \mu_{0} \text { against } H_{1}: \mu<\mu_{0}
$$

Neyman-Pearson Lemma - Example 2

Exponential model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from distr $\exp (\lambda), n=10$.
MP test for

$$
H_{0}: \lambda=1 / 2 \text { against } H_{1}: \lambda=1 / 4 .
$$

At significance level $\alpha=0.05$:

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}>31.41\right\}
$$

E.g. for a sample: 2; $0.9 ; 1.7 ; 3.5 ; 1.9 ; 2.1 ; 3.7 ; 2.5 ; 3.4 ; 2.8$:
$\Sigma=24.5 \rightarrow$ no grounds for rejecting H_{0}.

$$
\exp (\lambda)=\Gamma(1, \lambda) \quad \Gamma(a, \lambda)+\Gamma(b, \lambda)=\Gamma(a+b, \lambda) \quad \Gamma(n / 2,1 / 2)=\chi^{2}(n)
$$

Neyman-Pearson Lemma - Example 2'

Exponential model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from distr $\exp (\lambda), n=10$.
MP test for

$$
H_{0}: \lambda=1 / 2 \text { against } H_{1}: \lambda=3 / 4 \text {. }
$$

At significance level $\alpha=0.05$:

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}<10.85\right\}
$$

E.g. for a sample: 2; $0.9 ; 1.7 ; 3.5 ; 1.9 ; 2.1 ; 3.7 ; 2.5 ; 3.4 ; 2.8$: $\Sigma=24.5 \rightarrow$ no grounds for rejecting H_{0}.

$$
\exp (\lambda)=\Gamma(1, \lambda) \quad \Gamma(a, \lambda)+\Gamma(b, \lambda)=\Gamma(a+b, \lambda) \quad \Gamma(n / 2,1 / 2)=\chi^{2}(n)
$$

Example 2 cont.

The test

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}>31.41\right\}
$$

is UMP for $H_{0}: \lambda \geq 1 / 2$ against $H_{1}: \lambda<1 / 2$
The test

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}<10.85\right\}
$$

is UMP for $H_{0}: \lambda \leq 1 / 2$ against $H_{1}: \lambda>1 / 2$

Likelihood ratio test for composite hypotheses

$X \sim P_{\theta},\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ - family of distributions We are testing $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ such that $\Theta_{0} \cap \Theta_{1}=\varnothing, \Theta_{0} \cup \Theta_{1}=\Theta$
Let
$H_{0}: X \sim f_{0}\left(\theta_{0}, \cdot\right)$ for some $\theta_{0} \in \Theta_{0}$.
$H_{1}: X \sim f_{1}\left(\theta_{1}, \cdot\right)$ for some $\theta_{1} \in \Theta_{1}$,
where f_{0} and f_{1} are densities (for $\theta \in \Theta_{0}$ and θ $\in \Theta_{1}$, respectively)

Just like in the N-P Lemma, but models are statistic -

Likelihood ratio test for composite hypotheses - cont.

Test statistic: $\lambda=\frac{\sup _{\theta_{1} \in \Theta_{1}} f_{1}\left(\theta_{1}, X\right)}{\sup _{\theta_{0} \in \Theta_{0}} f_{0}\left(\theta_{0}, X\right)}$
or $\lambda=\frac{f_{1}\left(\hat{\theta}_{1}, X\right)}{f_{0}\left(\hat{\theta}_{0}, X\right)}$
where $\hat{\theta}_{0}, \hat{\theta}_{1}$ are MLE for the null and alternative hypothesis models
We reject H_{0} if $\lambda>c$ for a constant c (determined according to significance level)

Likelihood ratio test for composite hypotheses

 - justificationJust like in the Neyman-Pearson Lemma, we compare the "highest chance of obtaining observation X, when the alternative is true" to the "highest chance of obtaining observation X, when the null is true"; we reject the null hypothesis in favor of the alternative if this ratio is very unfavorable for the null.

Likelihood ratio test for composite hypotheses - alternative version

Test statistic:

$$
\tilde{\lambda}=\frac{\sup _{\theta \in \Theta} f(\theta, X)}{\sup _{\theta_{0} \in \Theta_{0}} f_{0}\left(\theta_{0}, X\right)}
$$

or $\tilde{\lambda}=\frac{f(\hat{\theta}, X)}{f_{0}\left(\hat{\theta}_{0}, X\right)}$
where $\hat{\theta}, \hat{\theta}_{0}$ are the ML estimators for the model without restrictions and for the null model, respectively.
We reject H_{0} if $\tilde{\lambda}>\tilde{c}$ for a constant \tilde{c}.

Likelihood ratio test for composite hypotheses - properties

For some models with composite hypotheses the UMPT does not exist (so the LR test will not be UMP because there is no such test)
e.g. testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$ if the family of distributions has a monotonic $L R$ property, i.e. $f_{1}(\mathrm{x}) / f_{0}(\mathrm{x})$ is an increasing function of a statistic $T(x)$ for any f_{0} and f_{1} corresponding to parameters $\theta_{0}<\theta_{1}$.
In order to have UMPT for $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$ we would need a critical region of the type $T(x)>c$, and to have a UMPT for $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta<\theta_{0}$ we would need a critical region of the type $T(x)<c$, so it is impossible to find a UMPT for $H_{1}: \theta \neq \theta_{0}$.

Likelihood ratio test: special cases

The exact form of the test depends on the distribution.

In many cases, finding the distribution is hard/complicated (in many such cases, we use the asymptotic properties of the LR test instead of precise formulae)

Notation

$x_{\text {something }}$ always means a quantile of rank something

Model I: comparing the mean

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$, where σ^{2} is known
$H_{0}: \mu=\mu_{0}$
Test statistic:

$$
U=\frac{\bar{X}-\mu_{0}}{\sigma} \sqrt{n} \sim N(0,1)
$$

$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$
critical region $\quad C^{*}=\left\{x: U(x)>u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<\mu_{0}$
critical region $\quad C^{*}=\left\{x: U(x)<u_{\alpha}=-u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$ critical region $C^{*}=\left\{x:|U(x)|>u_{1-\alpha / 2}\right\}$

Model I: example

Let $X_{1}, X_{2}, \ldots, X_{10}$ be an IID sample from $\mathrm{N}\left(\mu, 1^{2}\right)$:
$-1.21-1.370 .510 .37-0.75 \quad 0.441 .20-0.96-1.14-1.40$
Is $\mu=0$? (for $\alpha=0.05$)
In the sample: \quad mean $=-0.43$, variance $=0.92$
Test statistic:

$$
U=\frac{-0.43-0}{1} \sqrt{10} \approx-1.36
$$

$H_{0}: \mu=0$ against $H_{1}: \mu \neq 0, \mathrm{u}_{0.975} \approx 1.96$ (p -value ≈ 0.172) $H_{0}: \mu=0$ against $H_{1}: \mu<0, \mathrm{u}_{0.05} \approx-1.64(\mathrm{p}$-value $\approx 0.086)$ $H_{0}: \mu=0$ against $H_{1}: \mu>0, \mathrm{u}_{0.95} \approx 1.64$ (p -value ≈ 0.914) \rightarrow in none of these cases are there grounds to reject H_{0} for $\alpha=0.05$
\rightarrow but we would reiect $H_{0}: u=0$ in favor of $H_{1}: u<0$ for $\alpha=0.1$

Model II: comparing the mean

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from
$\mathrm{N}\left(\mu, \sigma^{2}\right)$, where σ^{2} is unknown
$H_{0}: \mu=\mu_{0}$
Test statistic:

$$
T=\frac{\bar{X}-\mu_{0}}{S} \sqrt{n} \sim t(n-1)
$$

$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$ critical region $\quad C^{*}=\left\{x: T(x)>t_{1-\alpha}(n-1)\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<\mu_{0}$ critical region $\quad C^{*}=\left\{x: T(x)<t_{\alpha}(n-1)\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$ critical region $\quad C^{*}=\left\{x:|T(x)|>t_{1-\alpha / 2}(n-1)\right\}$

$$
t_{\alpha}(n-1)=-t_{1-\alpha}(n-1)
$$

Model II: example (mean)

Let $X_{1}, X_{2}, \ldots, X_{10}$ be an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$:
$-1.21-1.370 .510 .37-0.75 \quad 0.441 .20-0.96-1.14-1.40$ Is $\mu=0$? (for $\alpha=0.05$)
In the sample: \quad mean $=-0.43$, variance $=0.92$
Test statistic:

$$
U=\frac{-0.43-0}{\sqrt{0.92}} \sqrt{10} \approx-1.42
$$

$H_{0}: \mu=0$ vs $H_{1}: \mu \neq 0, \mathrm{t}_{0.975}(9) \approx 2.26$ (p -value ≈ 0.188)
$H_{0}: \mu=0$ vs $H_{1}: \mu<0, \mathrm{t}_{0.05}(9) \approx-1.83$ (p -value ≈ 0.094)
$H_{0}: \mu=0$ vs $H_{1}: \mu>0, \mathrm{t}_{0.95}(9) \approx 1.83$ (p -value ≈ 0.906)
\rightarrow in none of these cases are there grounds to reject H_{0} for $\alpha=0.05$
\rightarrow but we would reiect $H_{0}: u=0$ in favor of $H_{1}: u<0$ for $\alpha=0.1$

Model II: comparing the variance

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from
$\mathrm{N}\left(\mu, \sigma^{2}\right)$, where σ^{2} is unknown
$H_{0}: \sigma=\sigma_{0}$
Test statistic:

$$
\chi^{2}=\frac{(n-1) S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)
$$

$H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma>\sigma_{0}$ critical region $\quad C^{*}=\left\{x: \chi^{2}(x)>\chi_{1-\alpha}^{2}(n-1)\right\}$
$H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma<\sigma_{0}$
critical region

$$
C^{*}=\left\{x: \chi^{2}(x)<\chi_{\alpha}^{2}(n-1)\right\}
$$

$H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma \neq \sigma_{0}$ critical region $\quad C^{*}=\left\{x: \chi^{2}(x)<\chi_{\alpha / 2}^{2}(n-1)\right.$

$$
\left.\vee \chi^{2}(x)>\chi_{1-\alpha / 2}^{2}(n-1)\right\}
$$

Model II: example (variance)

Let $X_{1}, X_{2}, \ldots, X_{10}$ be an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$:
$-1.21-1.370 .510 .37-0.75 \quad 0.441 .20-0.96-1.14-1.40$ Is $\sigma=1$? (for $\alpha=0.05$)
In the sample: variance $=0.92 \quad 9 \cdot 0.92$
Test statistic: $\quad \chi^{2}=\frac{9.92}{1} \approx 8.28$
$H_{0}: \sigma=1$ against $H_{1}: \sigma>1 \quad \chi_{0.95}^{2} \approx 16.92$
$H_{0}: \sigma=1$ against $H_{1}: \sigma<1 \quad \chi_{0.05}^{2} \approx 3.33$
$H_{0}: \sigma=1$ against $H_{1}: \sigma \neq 1 \quad \chi_{0.025}^{2} \approx 2.70 ; \chi_{0.975}^{2} \approx 19.02$
\rightarrow in none of these cases are there grounds to reject

$$
H_{0}(\text { for } \alpha=0.05)
$$

Model III: comparing the mean

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distribution with mean μ and variance (unknown), n - large.
$H_{0}: \mu=\mu_{0}$
Test statistic:

$$
T=\frac{\bar{X}-\mu_{0}}{S} \sqrt{n}
$$

has, for large n, an approximate distribution $N(0,1)$ $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$
critical region $\quad C^{*}=\left\{x: T(x)>u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<\mu_{0}$
critical region $\quad C^{*}=\left\{x: T(x)<u_{\alpha}=-u_{1-\alpha}\right\}$
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$
critical region $\quad C^{*}=\left\{x:|T(x)|>u_{1-\alpha / 2}\right\}$

Model IV: comparing the fraction

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a two-point distribution, $n-$ large.

$$
P_{p}(X=1)=p=1-P_{p}(X=0)
$$

$H_{0}: p=p_{0}$
Test statistic:

$$
U^{*}=\frac{\bar{X}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)}} \sqrt{n}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)}} \sqrt{n}
$$

has an approximate distribution $N(0,1)$ for large n $H_{0}: p=p_{0}$ against $H_{1}: p>p_{0}$ critical region $\quad C^{*}=\left\{x: U^{*}(x)>u_{1-\alpha}\right\}$
$H_{0}: p=p_{0}$ against $H_{1}: p<p_{0}$
critical region $\quad C^{*}=\left\{x: U^{*}(x)<u_{\alpha}=-u_{1-\alpha}\right\}$
$H_{0}: p=p_{0}$ against $H_{1}: p \neq p_{0}$
critical region $\quad C^{*}=\left\{x:\left|U^{*}(x)\right|>u_{1-\alpha / 2}\right\}$

Model IV: example

We toss a coin 400 times. We get 180 heads. Is the coin symmetric?

$$
H_{0}: p=1 / 2 \quad U^{*}=\frac{(180 / 400-1 / 2)}{\sqrt{1 / 2(1-1 / 2)}} \sqrt{400}=-2
$$

for $\alpha=0.05$ and $H_{1}: p \neq 1 / 2$ we have $u_{0.975}=1.96 \rightarrow$ we reject H_{0} for $\alpha=0.05$ and $H_{1}: p<1 / 2$ we have $u_{0.05}=-u_{0.95}=-1.64$ \rightarrow we reject H_{0}
for $\alpha=0.01$ and $H_{1}: p \neq 1 / 2$ we have $u_{0.995}=2.58$ \rightarrow we do not reject H_{0} for $\alpha=0.01$ and $H_{1}: p<1 / 2$ we have $u_{0.01}=-u_{0.99}=-2.33$ \rightarrow we do not reject H_{0} p value for $H_{1}: p \neq 1 / 2: 0.044$ p-value for $H_{1}: p<1 / 2: 0.022$

2
Faculty of Economic Sciences

