Mathematical Statistics

Anna Janicka

Lecture X, 5.05.2022

HYPOTHESIS TESTING II: COMPARING TESTS

- **0**. Definitions reminder and supplement
- 1. Comparing tests
- 2. Uniformly Most Powerful Test
- Likelihood ratio test: Neyman-Pearson Lemma
- Examples of tests for simple hypotheses and generalizations

Definitions – reminder

We are testing H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$

- *C* critical region of the test, the set of outcomes for which we reject H_0 , $C = \{x \in \mathcal{X} : \delta(x) = 1\}$
- The test has a **significance level** α , if for any $\theta \in \Theta_0$ we have $P_{\theta}(C) \leq \alpha$.

	In reality we have		
decision	H_0 true	H_0 false	
reject <i>H</i> ₀	Type I error	ОК	
do not reject H_0	OK	Type II error	

Statistical test – example (is the coin symmetric?) $H_0: p = \frac{1}{2} \vee H_1: p \neq \frac{1}{2}$ – reminder

Taking significance level $\alpha = 0.01$ We look for c such that (assuming $p=\frac{1}{2}$) P(|X - 200| > c) = 0.01From the de Moivre-Laplace theorem for large n! $P(|X-200| > c) \approx 2 \Phi(-c/10)$, to get = 0.01 we need $c \approx 25.8$

For a significance level <u>approximately</u> 0.01 we reject H_0 : $p=\frac{1}{2}$ when the number of tails is lower than 175 or higher than 225

Warsaw University Faculty of Economic Science $C = \{0, 1, \dots, 174\} \cup \{226, 227, \dots, 400\}$

Statistical test – example cont. (2). p-value

Slightly different question: what if the number of tails were 220 (T = 20)?

We have:

$$P_{\frac{1}{2}}(|X-200|>20)\approx 0.05$$

p-value: probability of type I error, if the value of the test statistic obtained was the critical value

So: *p*-value for T = 20 is approximately 0.05

p-value – probability of obtaining results at least as extreme as the ones obtained (contradicting the null at least as much as those obtained)

decisions:

- p-value < α reject the null hypothesis
- p-value $\ge \alpha$ no grounds to reject the null hypothesis

WARSAW UNIVERSITY Faculty of Economic Sciences

Statistical test – example cont. (3) The choice of the alternative hypothesis

For a different alternative...

For example, we lose if tails appear *too often*. $\square H_0$: $p = \frac{1}{2}$, H_1 : $p > \frac{1}{2}$

□ Which results would lead to rejecting H_0 ?

$$X - 200 \le c - do not reject H_{0.}$$

X – 200 >
$$c$$
 – reject H_0 in favor of H_1 .

i.e. T(x) = x - 200

we could have $H_0: p \le \frac{1}{2}$

Warsaw University Faculty of Economic Sciences

Statistical test – example cont. (4) The choice of the alternative hypothesis

Again, from the de Moivre – Laplace theorem: $P_{\frac{1}{2}}(X - 200 > c) \approx 0.01$ for $c \approx 23.3$, so for a significance level 0.01 we reject $H_0: p = \frac{1}{2}$ in favor of $H_1: p > \frac{1}{2}$ if the number of tails is at least 224

What if we got 220 tails? p-value is equal to \approx 0.025; do not reject H_0

Power of the test (for an alternative hypothesis)

 $P_{\theta}(C)$ for $\theta \in \Theta_1$ – power of the test (for an alternative hypothesis)

Function of the power of a test:

 $1-\beta: \Theta_1 \rightarrow [0,1]$ such that $1-\beta(\theta) = \mathsf{P}_{\theta}(C)$

Usually: we look for tests with a given level of significance and the highest power possible.

Power of the test (for an alternative hypothesis)

Statistical test – example cont. Power of the test

 \square We test H_0 : $p = \frac{1}{2}$ against H_1 : $p = \frac{3}{4}$ with: T(x) = X - 200, $C = \{T(x) > 23.3\}$ (i.e. for a significance level $\alpha = 0.01$) Power of the test: $1-\beta(\frac{3}{4}) = P(T(x) > 23.3 \mid p = \frac{3}{4}) = P_{\frac{3}{4}}(X > 223.3)$ ≈1-Φ((223.3-300)/5√3) ≈ Φ(8.85) ≈ 1 **D** But if H_1 : p = 0.55 $1-\beta(0.55) = P(T(x) > 23.3 \mid p = 0.55) \approx 1-\Phi(0.33) \approx 1 0.63 \approx 0.37$ \square And if H_1 : $p = \frac{1}{4}$ for the same T we would get $(1/4) = P(T(x) > 23.3 | p = 1/4) \approx 1 - \Phi(14.23) \approx 0$

Power of the test: Graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Power of the test: Graphical interpretation (2)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Power of the test: Graphical interpretation (3) – a very bad test

distributions of the test statistic T assuming that the null and alternative hypotheses are true $\theta = \theta_0$ $\theta = \theta_1$ power of the test С type I error type II error ARSAW UNIVERSIT aculty of Economic Sciences

Specificity – *true negative rate* (when in reality H_0 is not true)

Sensitivity – *true positive rate* (when in reality H_0 is true)

terms used commonly in diagnostic tests $(H_0 \text{ is having a medical condition})$

Sensitivity and specificity – example

Performance of a SARS-COV-2 antigen test

	Infected (null is true)	Not infected (null is false)	Overall nuber of cases
Positive test result	92	2 (Type II error, false positive)	94
Negative test result (reject null)	49 (Type I error, false negative)	1319	1368
Overall	141	1321	1432

Sensitivity: 92/141 = 65.3% Specificity: 1319/1321 = 99.9%

s 🖇

Source:

Economic Scientitps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260496/

Sensitivity and specificity – example

Any symptom (n=995) Results in COVID-19

No symptoms (n=326) Acute respiratory syndrome (n=480) Fever (n=425) Loss of smell (n=45) Self-payer (n=269)

WARSAW UNIVERSITY

patients

without

Results in

COVID-19

Faculty of Economic Sciences https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260496/

sometimes we also look at the size of a test:

 $\sup_{\theta \in \Theta_0} P_{\theta}(C)$

then we have:

significance level = α if the size of the test does not exceed α .

Warsaw University Faculty of Economic Sciences How do we chose the best test?

for given null and alternative hypotheses
for a given significance level

 \rightarrow the test which is *more powerful* is better

WARSAW UNIVERSITY Faculty of Economic Sciences $\begin{aligned} X \sim P_{\theta}, \{ \mathsf{P}_{\theta} \colon \theta \in \Theta \} - \text{family of distributions} \\ \text{We test } H_0 \colon \theta \in \Theta_0 \text{ against } H_1 \colon \theta \in \Theta_1 \\ \text{ such that } \Theta_0 \cap \Theta_1 = \emptyset \end{aligned}$

with two tests with critical regions C_1 and C_2 ; both at significance level α .

The test with the critical region C_1 is **more powerful** than the test with critical region C_2 , if

$\forall \theta \in \Theta_1 : P_{\theta}(C_1) \ge P_{\theta}(C_2)$ and $\exists \theta_1 \in \Theta_1 : P_{\theta_1}(C_1) > P_{\theta_1}(C_2)$

For given H_0 : $\theta \in \Theta_0$ and H_1 : $\theta \in \Theta_1$:

- δ^* is a **uniformly most powerful test** (UMPT) at significance level α , if
- 1) δ^* is a test at significance level α ,
- 2) for any test δ at significance level α , we have, for any $\theta \in \Theta_1$:

$$P_{\theta}(\delta^{*}(X)=1) \geq P_{\theta}(\delta(X)=1)$$

i.e. the power of the test δ^* is not smaller than the power of any other test of the same hypotheses, for any $\theta \in \Theta_1$

Warsaw University Faculty of Economic Sciences if Θ_1 has one element, the word *uniformly* is redundant

Uniformly most powerful test – alternative form

For given H_0 : $\theta \in \Theta_0$ and H_1 : $\theta \in \Theta_1$:

- A test with critical region C^* is a **uniformly most powerful test** (UMPT) at significance level α , if
- 1) The test with critical region C^* is a test at significance level α , i.e.

for any $\theta \in \Theta_0$: $P_{\theta}(C^*) \leq \alpha$,

2) for any test with critical region *C* at significance level α , we have for any $\theta \in \Theta_1$:

$$P_{\theta}(C^*) \geq P_{\theta}(C)$$

Testing simple hypotheses

We observe X. We want to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

(two simple hypotheses)

We can write it as:

 $H_0: X \sim f_0$ against $H_1: X \sim f_1$,

where f_0 and f_1 are *densities* of distributions defined by θ_0 and θ_1 (i.e. P_0 and P_1)

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma

Let
$$C^* = \left\{ x \in X : \frac{f_1(x)}{f_0(x)} > c \right\}$$

such that $P_0(C^*) = \alpha$ and $P_1(C^*) = 1 - \beta$ Then, for any $C \subseteq X$:

if
$$P_0(C) \leq \alpha$$
, then $P_1(C) \leq 1 - \beta$.

(i.e.: the test with critical region C^* is the most powerful test for testing H_0 against H_1)

In many cases, it is easier to write the test as

 $C^* = \{x: \ln f_1(x) - \ln f_0(x) > c_1\}$

Likelihood ratio test: we compare the likelihood ratio to a

constant; if it is bad we reject H_0

Neyman-Pearson Lemma – Example 1

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), σ^2 is known

The most powerful test for

$$H_0: \mu = 0 \text{ against } H_1: \mu = 1.$$

At significance level α :

$$C^* = \left\{ (x_1, x_2, \dots, x_n) : \bar{X} > \frac{u_{1-\alpha}\sigma}{\sqrt{n}} \right\}$$

For obs. 1.37; 0.21; 0.33; -0.45; 1.33; 0.85; 1.78; 1.21; 0.72 from N(μ , 1) we have, for α = 0.05 :

$$\overline{X} \approx 0.82 > 1.645 \cdot \frac{1}{\sqrt{9}} \approx 0.54$$

Neyman-Pearson Lemma – Example 1 cont.

Power of the test

$$P_1(C^*) = P\left(\bar{X} > \frac{1.645\sigma}{\sqrt{n}} \mid \mu = 1\right) = \dots$$
$$= 1 - \Phi\left(1.645 - \frac{\mu_1 \cdot \sqrt{n}}{\sigma}\right) \approx 0.91$$

If we change α , μ_1 , n – the power of the test....

Warsaw University Faculty of Economic Sciences

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for H_1 : $\mu > 0$ and for H_0 : $\mu \le 0$ against H_1 : $\mu > 0$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing

$$H_0: \mu \le \mu_0$$
 against $H_1: \mu > \mu_0$

Note the change of direction in the inequality when testing

$$H_0: \mu \ge \mu_0$$
 against $H_1: \mu < \mu_0$

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from an exp(λ) distribution, n = 10. MP test for

$$H_0: \lambda = \frac{1}{2}$$
 against $H_1: \lambda = \frac{1}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

 $\overline{\exp(\lambda)} = \Gamma(1,\lambda) \qquad \Gamma(a,\lambda) + \Gamma(b,\lambda) = \Gamma(a+b,\lambda) \qquad \Gamma(\frac{n}{2},\frac{1}{2}) = \chi^2(n)$

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from an exp(λ) distribution, n = 10. MP test for

$$H_0: \lambda = \frac{1}{2}$$
 against $H_1: \lambda = \frac{3}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

 $\overline{\exp(\lambda)} = \Gamma(1,\lambda) \qquad \Gamma(a,\lambda) + \Gamma(b,\lambda) = \Gamma(a+b,\lambda) \qquad \Gamma(\frac{n}{2},\frac{1}{2}) = \chi^2(n)$

Example 2 cont.

The test
$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

is UMP for H_0 : $\lambda \ge \frac{1}{2}$ against H_1 : $\lambda < \frac{1}{2}$

The test
$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

is UMP for H_0 : $\lambda \leq \frac{1}{2}$ against H_1 : $\lambda > \frac{1}{2}$

WARSAW UNIVERSITY Faculty of Economic Sciences

WARSAW UNIVERSITY Faculty of Economic Sciences