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1. Asymptotic Properties of Estimators – cont.

During the previous lecture, we introduced the distinction between small and large sample
behavior of estimators, and studied two asymptotic properties: unbiasedness and consistency.
Here, we will continue the topic with two more concepts: asymptotic normality and asymptotic
efficiency.

1.1. Asymptotic normality.

Definition 1. We will say that ĝ is an asymptotically normal estimator of g(θ), if for
any θ ∈ Θ there exists σ2(θ) such that, when n→∞

√
n(ĝ(X1, X2, . . . , Xn)− g(θ))

D−→ N (0, σ2(θ)).

The notation
D−→ signifies convergence in distribution: for any a ∈ R we have

lim
n→∞

Pθ
( √

n

σ(θ)
(ĝ(X1, X2, . . . , Xn)− g(θ)) ≤ a

)
= Φ(a),

where Φ(·) denotes the CDF of the standard normal distribution.

In other words, an estimator is asymptotically normal if the distribution of ĝ(X1, X2, . . . , Xn)

is for large n similar to N
(
g(θ), σ

2(θ)
n

)
.

The notion of asymptotic normality is stronger than consistency, i.e. an estimator which
is asymptotically normal is consistent (although not necessarily strongly consistent). Note
that although the definition of asymptotic normality includes a concept which is similar
to unbiasedness – i.e., the expected value of the asymptotic normal distribution which fits
the distribution of the estimator is equal to g(θ) – this does not necessarily imply that the
estimator itself is unbiased (even asymptotically, although in the latter case counterexamples
may be thought of as “pathological” and are not frequently encountered in practice). A
similar case holds for the variance: although for large samples, the estimator distribution

may be approximated with the use of a normal distribution with a variance equal to σ2(θ)
n

,
this does not imply that the variance of the estimator is equal to this value (even in the limit).

However, the value of σ2(θ)
n

is called the asymptotic variance.1

Example: Let X1, X2, . . . , Xn, . . . be an IID sample from a distribution with mean µ and
variance σ2. On the base of the CLT, we see that X̄ is an asymptotically normal estimator
of the mean:

√
n(X̄ − µ)

D−→ N (0, σ2).

In this case, the asymptotic variance σ2

n
is exactly equal to the estimator variance.

In many cases, the proof that an estimator is asymptotically normal may be conducted
with the use of the following handy theorem:

Theorem 1. Delta Method. Let Tn be a sequence of random variables such that for n→∞
we have

√
n(Tn − µ)

D−→ N (0, σ2),

and let h : R→ R be a function differentiable at point µ such that h′(µ) 6= 0. Then,

√
n(h(Tn)− h(µ))

D−→ N (0, σ2(h′(µ))2).

1Some authors define the asymptotic variance as σ2(θ).
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In the above formulation, µ and σ are in fact functions of the parameter θ, governing
the probability distribution. This theorem, which allows us to say when a function of an
estimator which is asymptotically normal is also asymptotically normal, proves extremely
useful especially in cases when studying estimators which are functions of statistics Tn, which
can be easily shown co converge on the base of CLT.

Example: Let X1, X2, . . . , Xn, . . . be an IID sample from an exponential distribution with
parameter λ > 0. We have seen that the MLE(λ) = 1/X̄. Finding the distribution of 1/X̄
in order to study the properties of the MLE estimator is possible, but can be avoided. From
the CLT, we have that the average is an asymptotically normal estimator of the inverse of λ:

√
n(X̄ − 1

λ
)
D−→ N (0,

1

λ2
).

Therefore, using the Delta Method for h(x) = 1
x

we get

√
n(

1

X̄
− λ)

D−→ N (0,
1

λ2
(− 1

1
λ2

)2),

that is: the MLE estimator is asymptotically normal, and the asymptotic variance is equal
to λ2

n
.

Asymptotic normality is a welcome property of estimators. If an estimator is asymptotically
normal, then for large samples the distribution of this estimator is approximately normal,
meaning that for further calculations which we would like to perform (for example: hypothesis
testing) we may use the normal distribution instead of the exact distribution. Asymptotic
normality of an estimator also makes another asymptotic property – efficiency – well defined.

1.2. Asymptotic efficiency. For an asymptotically normal estimator ĝ of the value g(θ)
(i.e. an estimator for which we can calculate the asymptotic variance), we can introduce the
following concept:

Definition 2. We define asymptotic efficiency as

as.ef(ĝ) =
(g′(θ))2 n

σ2(θ) · In(θ)
,

where σ2(θ)
n

is the asymptotic variance.

Note that this is a modification of the definition of efficiency to the limit case, where the
variance of the estimator is substituted with the asymptotic variance. Note also that if the
sample is IID, we have

as.ef(ĝ) =
(g′(θ))2

σ2(θ) · I1(θ)
.

Just as in the finite sample case, also relative efficiency of estimators may be defined:

as.ef(ĝ1, ĝ2) =
σ2
2(θ)

σ2
1(θ)

=
as.ef(ĝ1)

as.ef(ĝ2)
,

allowing us to compare asymptotic efficiency of two estimators of the same value.
In general, asymptotic efficiency is a welcome property of an estimator. There are cases,

however, where a less asymptotically efficient estimator may be preferred to a more efficient
one – for example, if small sample properties of the estimator are better, or if the more
efficient estimator uses such properties of the distribution, which the researcher is unsure of
(cf. Problem 1 from Problem set 7&8).

Examples: For symmetric distributions, the mean coincides with the median. Assume that
we are interested in estimating the center of the distribution. Should we use the sample
average or the sample median to do it? In some cases, the response is straightforward: if the
distribution does not have a mean (as is the case for the Cauchy distribution for example), the
sample average will not be a consistent estimator of the center of the distribution (it will not
converge). In other cases, some insight may be gained with an analysis of asymptotic efficiency.
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Before we look at examples of two distributions, let us formulate a theorem describing the
asymptotic properties of the sample median:

Theorem 2. Let X1, X2, . . . , Xn, . . . be an IID sample from a continuous distribution with
density f(x), such that the density is continuous and different from 0 for the median m. Then,
the sample median is an asymptotically normal estimator of the median m, and

√
n(m̂ed−m)

D−→ N (0,
1

4(f(m))2
).

In consequence:

(1) For a normal distribution N (µ, σ2), we have that:

√
n(X̄ − µ)

D−→ N (0, σ2),

and
√
n(m̂ed− µ)

D−→ N (0,
σ2π

2
),

so the relative asymptotic efficiency for X̄ and m̂ed estimators of µ is equal to

as.ef(X̄, m̂ed) =
σ2π
2

σ2
=
π

2
> 1,

which means that the average is more asymptotically efficient. Meanwhile,
(2) For a Laplace distribution (with density f(x) = λ

2
e−λ|x−µ|), we have that

√
n(X̄ − µ)

D−→ N (0,
2

λ2
),

and
√
n(m̂ed− µ)

D−→ N (0,
1

λ2
),

so the relative asymptotic efficiency for X̄ and m̂ed estimators of µ is equal to

as.ef(X̄, m̂ed) =
1
λ2

2
λ2

=
1

2
< 1,

which means that the median is more asymptotically efficient.

2. Asymptotic properties of ML estimators

We will conclude our considerations of asymptotic properties of estimators by formulating
a couple of theorems describing the asymptotic properties of MLE estimators.

Theorem 3. Let X1, X2, . . . , Xn, . . . be a sample from a distribution with density fθ(x). If
Θ ⊆ R is an open set, and

(1) all densities fθ have the same support;

(2) the equation d
dθ

lnL(θ) = 0 has exactly one solution θ̂,

then θ̂ is the m.l.e. of θ and it is consistent.

Theorem 4. Let X1, X2, . . . , Xn, . . . be a sample from a distribution with density fθ(x). If

Θ ⊆ R is an open set, and the m.l.e. θ̂ is consistent (for example, the distribution fulfills the
assumptions of the previous theorem), and

(1) d2

dθ2
lnL(θ) exists;

(2) Fisher information may be calculated, and 0 < I1(θ) <∞;
(3) the order of integration with respect to x and derivation with respect to θ may be

reversed,
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then θ̂ is asymptotically normal and

√
n(θ̂ − θ) D−→ N

(
0,

1

I1(θ)

)
.

Additionally, if g : R → R is a function differentiable at point θ, such that g′(θ) 6= 0, and
ĝ(X1, X2, . . . , Xn) is MLE(g(θ)), then

√
n(ĝ(θ)− g(θ))

D−→ N
(

0,
(g′(θ))2

I1(θ)

)
.

As a consequence, comparing the asymptotic variances in the theorem above with the
expression in the definition of asymptotic efficiency, we get that

Theorem 5. Let X1, X2, . . . , Xn, . . . be a sample from a distribution with density fθ(x). If
the regularity conditions from the previous theorems are fulfilled, then the m.l. estimators are
asymptotically efficient.

Therefore, if certain regularity conditions are fulfilled, we have that the m.l. estimators of
θ or g(θ) are: consistent, asymptotically normal and asymptotically efficient. This is why the
maximum likelihood estimation technique is, in most cases, the method of choice for parameter
estimation. Even though, as we have seen, the m.l. estimators need not be unbiased.
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