Mathematical Statistics

Anna Janicka

Lecture IX, 28.04.2022

CONFIDENCE INTERVALS – cont. HYPOTHESIS TESTING

Plan for Today

- 1. Confidence intervals cont.
- 2. A statistical hypothesis
- 3. A statistical test
- 4. Type I and type II errors
- 5. Significance level, p-value
- 6. Testing scheme
- 7. Power of a test

Most commonly used models for CI

- Model I (normal): CI for the mean, variance known
- Model II (normal): CI for the mean, variance unknown
- Model II (normal): CI for the variance
- Model III (asymptotic): CI for the mean
- Model IV (asymptotic): CI for the fraction
- Asymptotic model: CI based on MLE

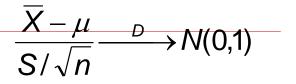
CI for the mean – Model III – reminder

Asymptotic model: X_1 , X_2 , ..., X_n are an IID sample from a distr. with mean (μ) and variance, n – large. *Approximate* CI for μ , for a confidence level 1- α :

$$\left[\overline{X} - u_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + u_{1-\alpha/2} \frac{S}{\sqrt{n}}\right]$$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from the N(0,1) distribution, $S = \sqrt{S^2}$ for the unbiased estimator of the variance S^2 .

Justification: from CLT, when $n \rightarrow \infty$ we have



CI for the fraction – Model IV – reminder

Asymptotic model: $X_1, X_2, ..., X_n$ are an IID sample from a two-point distribution, n – large.

$$P_{p}(X=1) = p = 1 - P_{p}(X=0)$$

Approximate CI for p, for a confidence level $1-\alpha$:

$$\left[\hat{p}-u_{1-\alpha/2}\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}},\hat{p}+u_{1-\alpha/2}\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right]$$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from the N(0,1) distribution

CI on the base of the MLE – Asymptotic model

Asymptotic model: $X_1, X_2, ..., X_n$ are an IID sample from a distr. with unknown parameter θ , n – large. If $\hat{\theta} = MLE(\theta)$ is asymptotically normal with an asymptotic variance equal to $\frac{1}{\mu_1(\theta)}$, i.e.

$$(\hat{\theta} - \theta)\sqrt{n} \xrightarrow{D} N(0, \frac{1}{l_1(\theta)})$$

and if $I(\hat{\theta}) = MLE(I(\theta))$ is consistent, and we have: $(\hat{\theta} - \theta)\sqrt{nI(\hat{\theta})} \xrightarrow{D} N(0,1)$

Approximate CI for θ , for a confidence level 1- α :

$$\hat{\theta} - u_{1-\alpha/2} \frac{1}{\sqrt{nl_1(\hat{\theta})}}, \hat{\theta} + u_{1-\alpha/2} \frac{1}{\sqrt{nl_1(\hat{\theta})}}$$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from N(0,1)

CI on the base of the MLE – Asymptotic model, general case

Asymptotic model: $X_1, X_2, ..., X_n$ are an IID sample from a distr. with unknown parameter θ , n – large. If $g(\hat{\theta}) = g(MLE(\theta))$ is asymptotically normal with an asymptotic variance equal to $\frac{(g'(\theta))^2}{l_1(\theta)}$, i.e. $(\hat{\theta} - \theta)\sqrt{n} \xrightarrow{D} N(0, \frac{(g'(\theta))^2}{l_1(\theta)})$ and if $I(\hat{\theta}) = MLE(I(\theta))$ is consistent, and we have: $(\hat{\theta} - \theta)\sqrt{nI(\hat{\theta})} \xrightarrow{D} N(0,1)$

Approximate CI for $g(\hat{\theta})$, for a confidence level $1 - \alpha$: $g(\hat{\theta}) - u_{1-\alpha/2} \frac{|g'(\hat{\theta})|}{\sqrt{nl_1(\hat{\theta})}}, g(\hat{\theta}) + u_{1-\alpha/2} \frac{|g'(\hat{\theta})|}{\sqrt{nl_1(\hat{\theta})}}$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from N(0,1)

CI on the base of the MLE – Example

Let X_1 , X_2 , ..., X_n be an IID sample from a Poisson distr. with unknown parameter θ , n – large.

 $\hat{\theta} = MLE(\theta) = \overline{X}$ is asymptotically normal (CLT) with an asymptotic variance equal to $\gamma_{l_1(\theta)} = \theta$ $\hat{I}(\theta) = 1/\hat{\theta}$ behaves well.

Approximate CI for θ , for a confidence level $1 - \alpha$:

$$\left[\overline{X} - u_{1-\alpha/2} \frac{\sqrt{\overline{X}}}{\sqrt{n}}, \overline{X} + u_{1-\alpha/2} \frac{\sqrt{\overline{X}}}{\sqrt{n}}\right]$$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from N(0,1)

For example, if for *n*=900 we had $\overline{X} = 4$, then the 90% CI for θ would be $\approx \left[4 - 1.645\sqrt{\frac{4}{900}}, 4 + 1.645\sqrt{\frac{4}{900}}\right] \approx [3.89, 4.11]$

CI on the base of the MLE – Example cont.

If we wanted to approximate the probability of the outcome = 0, we would look for $g(\theta) = e^{-\theta}$

$$g(\hat{\theta}) = g(MLE(\theta)) = e^{-\overline{X}}$$

And the approximate CI for $g(\theta)$, for a confidence level 1- α :

$$\left[e^{-\overline{X}} - u_{1-\alpha/2} \frac{\sqrt{\overline{X}}}{\sqrt{n}} e^{-\overline{X}}, e^{-\overline{X}} + u_{1-\alpha/2} \frac{\sqrt{\overline{X}}}{\sqrt{n}} e^{-\overline{X}} \right]$$

where $u_{1-\alpha/2}$ is a quantile of rank $1-\alpha/2$ from N(0,1) For example, if for *n*=900 we had $\overline{X} = 4$, then the 90% CI for $g(\theta)$ would be

 $\approx \left| e^{-4} - 1.645 \sqrt{\frac{4}{900}} e^{-4}, e^{-4} + 1.645 \sqrt{\frac{4}{900}} e^{-4} \right| \approx [0.016, 0.020]$

WARSAW UNIVERSITY Faculty of Economic Sciences a statement regarding the probability distribution governing the phenomenon of interest (the random variable observed)

Aim: we want to draw conclusions about the validity of the hypothesis based on observed values of the random variable

WARSAW UNIVERSITY Faculty of Economic Sciences

Examples of statistical hypotheses

- $\Box X_1, X_2, ..., X_n$ are a sample from an exponential distribution
- \Box X₁, X₂, ..., X_n are a sample from a normal distribution (assumption) with param (5, 1)
- $\Box EX_i = 7$ (the expected value of the distr is 7)
- □ Var X_i > 1 (the variance of the distribution exceeds 1)
- $\Box X_1, X_2, ..., X_n$ are independent
- $\square EX_{j}=EY_{j} (X_{1}, X_{2}, ..., X_{n} \text{ and } Y_{1}, Y_{2}, ..., Y_{m}$ $\implies have the same expected value)$

Types of hypotheses

hypothesis

- Parametric: concerning the value of distribution parameters
- nonparametric: concerning other properties of the distribution

hypothesis

- simple: specifies a single distribution
- composite: specifies a family of distributions

Null and alternative hypotheses

Null hypothesis: "basic", denoted H_0 **Alternative hypothesis**: hypothesis which is accepted if the null is rejected, denoted H_1

e.g.:

$$H_0: \lambda = 1, \quad H_1: \lambda \neq 1$$

 $H_0: \lambda = 1, \quad H_1: \lambda = 2$
 $H_0: \lambda = 1, \quad H_1: \lambda > 1$

Warsaw University Faculty of Economic Sciences The null and alternative hypotheses do not have equal status.

Null hypothesis: a statement, perhaps based on existing theory, deemed true until there appear observations very hard to reconcile with the statement. Speculative hypothesis.

Alternative hypothesis: the possibility taken into account when we are forced to reject the null hypothesis

A procedure, which for any sample of observations (any possible set of values) leads to one of two decisions:

- reject the null hypothesis (in favor of the alternative)
- do not reject the null hypothesis

reject H_0

no grounds to reject H_0

Point of departure: statistical model

 $X = (X_1, X_2, ..., X_n) - \text{vector of observations} \in X$ $X \sim P_{\theta}, \{P_{\theta}: \theta \in \Theta\} - \text{a family of distributions}$ Hypotheses H_0, H_1 : $H_0: \theta \in \Theta_0$ $H_1: \theta \in \Theta_1$

such that $\Theta_0 \cap \Theta_1 = \varnothing$

(the hypotheses are mutually exclusive)

A test of H_0 against H_1 :

Statistic $\delta : \mathbf{X} \rightarrow \{0,1\}$

the value 1 is interpreted as rejection of H_0 (in favor of H_1) and 0 as not rejecting H_0

Region of rejection (critical region):

 $C = \{x \in X : \delta(x) = 1\}$ – set of values for which we reject H_0 ;

Region of acceptance:

 $A = \{x \in \mathbf{X} : \delta(x) = 0\} - \text{set of values for which we}$ do not reject H_0

 $C \cup A = X, C \cap A = \emptyset$

Warsaw University Faculty of Economic Science: The critical region of a test usually takes the form

$$C = \{x \in \boldsymbol{X} : T(x) > c\}$$

for a selected statistic *T* (test statistic) and a value *c* (critical value)

Equivalent descriptions of a test:

- specification of T and c
- specification of C
 - specification of δ

in many cases by a **critical region** one means the range of

We want to verify whether a coin is symmetric We toss the coin 400 times $X \sim B(400, p)$ $\Box H_0: p = \frac{1}{2}, H_1: p \neq \frac{1}{2}$ \Box Some results may suggest rejection of H_0 : $|X - 200| < c - do not reject H_0$ $|X - 200| \ge c - reject H_0$ in favor of H_1 . *i.e.* T(x) = |x - 200|

Warsaw University Faculty of Economic Sciences \rightarrow how do we choose *c*?

Type I and type II errors

There is always a possibility of error due to randomness of observations

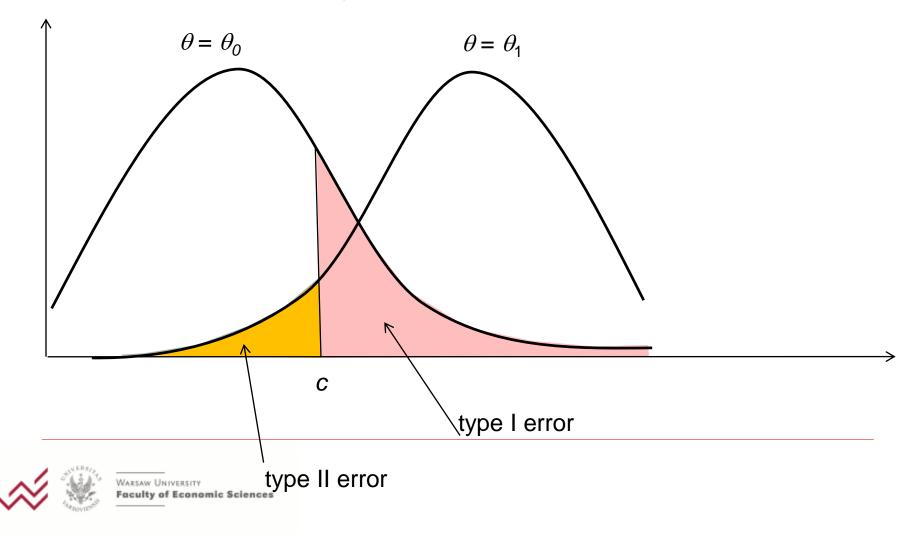
	In reality we have	
decision	H_0 true	H_0 false
reject H ₀	Type I error	OK
do not reject H_0	OK	Type II error

$P_{\theta}(C)$ for $\theta \in \Theta_0$ – probability of type I error $P_{\theta}(A)$ for $\theta \in \Theta_1$ – probability of type II error

Warsaw University Faculty of Economic Science: there is a trade-off between errors of 1st and 11nd type: it's impossible to minimize both simultaneously

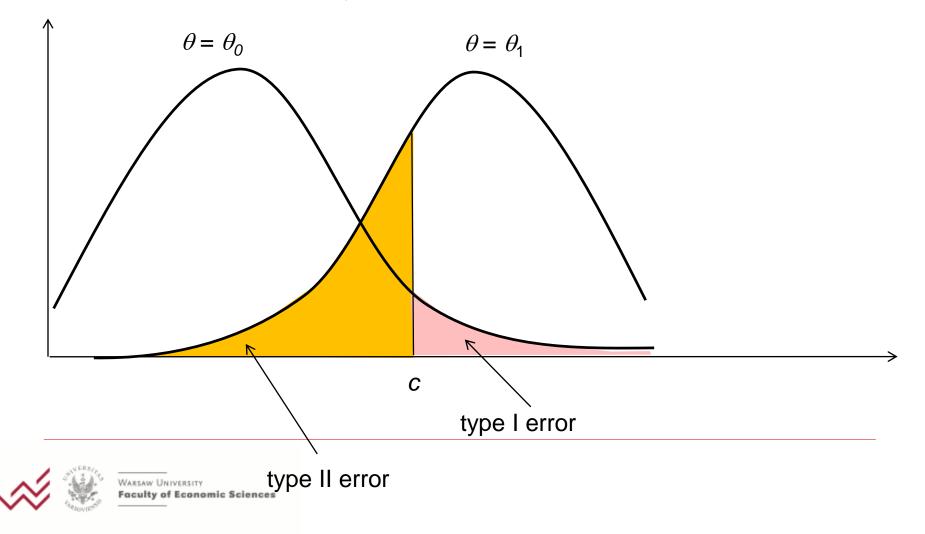
Type I and type II errors: graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true



Type I and type II errors: graphical interpretation (2)

distributions of the test statistic T assuming that the null and alternative hypotheses are true



A test has a **significance level** α , if for any $\theta \in \Theta_0$ we have $P_{\theta}(C) \leq \alpha$.

Usually: we look for tests with minimal probability of type II error for a given level of significance α , usually = 0.1 or 0.05 or 0.01

Type I error usually more important – not only conservatism

WARSAW UNIVERSITY Faculty of Economic Sciences

Statistical test – example cont. Finding the critical range

We want: significance level $\alpha = 0.01$ We look for *c* such that (assuming $p = \frac{1}{2}$)

P(|X - 200| > c) = 0.01

From the de Moivre-Laplace theorem for large n!

$$P(|X - 200| > c) \approx 2 \Phi(-c/10)$$
, to get
= 0.01 we need $c \approx 25.8$

For a significance level <u>approximately</u> 0.01 we reject *H*₀ when the number of tails is lower than 175 or higher than 225

 $C = \{0, 1, \dots, 174\} \cup \{226, 227, \dots, 400\}$

Statistical test – example cont. (2). p-value

Slightly different question: what if the number of tails were 220 (T = 20)?

We have:

$$P_{\frac{1}{2}}(|X-200|>20)\approx 0.05$$

p-value: probability of type I error, if the value of the test statistic obtained was the critical value

So: *p*-value for T = 20 is approximately 0.05

p-value – probability of obtaining results at least as extreme as the ones obtained (contradicting the null at least as much as those obtained)

decisions:

- p-value < α reject the null hypothesis
- p-value $\geq \alpha$ no grounds to reject the null hypothesis

WARSAW UNIVERSITY Faculty of Economic Sciences

Statistical test – example cont. (3) The choice of the alternative hypothesis

For a different alternative...

For example, we lose if tails appear *too often*. $\square H_0$: $p = \frac{1}{2}$, H_1 : $p > \frac{1}{2}$

□ Which results would lead to rejecting H_0 ?

$$X - 200 \le c - do not reject H_{0.}$$

X – 200 >
$$c$$
 – reject H_0 in favor of H_1 .

i.e. T(x) = x - 200

we could have $H_0: p \le \frac{1}{2}$

Warsaw University Faculty of Economic Sciences

Statistical test – example cont. (4) The choice of the alternative hypothesis

Again, from the de Moivre – Laplace theorem: $P_{\frac{1}{2}}(X - 200 > c) \approx 0.01$ for $c \approx 23.3$, so for a significance level 0.01 we reject $H_0: p = \frac{1}{2}$ in favor of $H_1: p > \frac{1}{2}$ if the number of tails is at least 224

What if we got 220 tails? p-value is equal to \approx 0.025; do not reject H_0

Scheme of conducting a statistical test

- 1. Definition of the statistical model
- **2.** Posing hypotheses: H_0 and H_1
- **3**. Choice of significance level α
- 4. Choice of the test statistic T / defining the critical region C
- 5. Decision: depends on whether the value of the test statistic falls into the critical region (or based on comparison of the p-value and α)

Power of the test (for an alternative hypothesis)

 $P_{\theta}(C)$ for $\theta \in \Theta_1$ – power of the test (for an alternative hypothesis)

Function of the power of a test:

 $1-\beta: \Theta_1 \rightarrow [0,1]$ such that $1-\beta(\theta) = \mathsf{P}_{\theta}(C)$

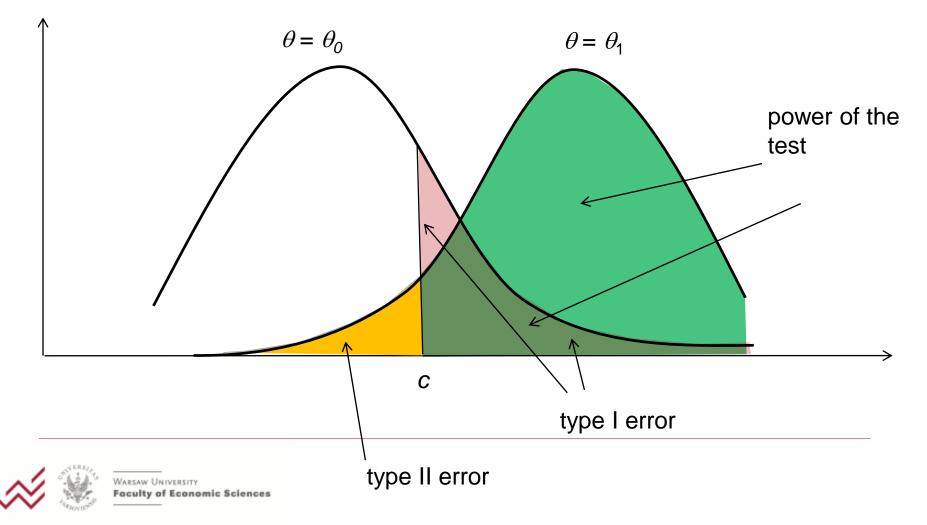
Usually: we look for tests with a given level of significance and the highest power possible.

Statistical test – example cont. (5) Power of the test

 \square We test H_0 : $p = \frac{1}{2}$ against H_1 : $p = \frac{3}{4}$ with: T(x) = X - 200, $C = \{T(x) > 23.3\}$ (i.e. for a significance level $\alpha = 0.01$) Power of the test: $1-\beta(\frac{3}{4}) = P(T(x) > 23.3 \mid p = \frac{3}{4}) = P_{\frac{3}{4}}(X > 223.3)$ ≈1-Φ((223.3-300)/5√3) ≈ Φ(8.85) ≈ 1 **D** But if H_1 : p = 0.55 $1-\beta(0.55) = P(T(x) > 23.3 \mid p = 0.55) \approx 1-\Phi(0.33) \approx 1 0.63 \approx 0.37$ \square And if H_1 : $p = \frac{1}{4}$ for the same T we would get $\sqrt[3]{1-\beta(1/4)} = P(T(x) > 23.3 \mid p = 1/4) \approx 1-\Phi(14.23) \approx 0$

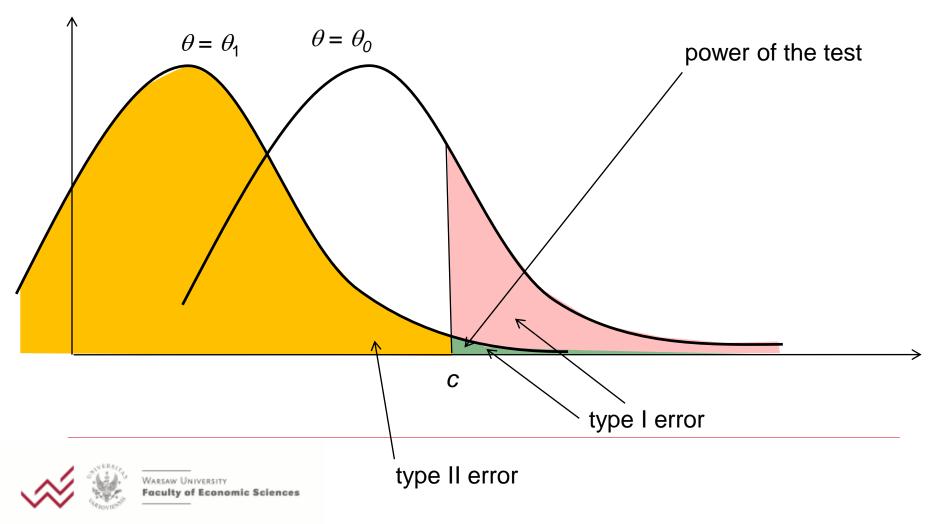
Power of the test: Graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true



Power of the test: Graphical interpretation (2)

distributions of the test statistic T assuming that the null and alternative hypotheses are true



WARSAW UNIVERSITY Faculty of Economic Sciences