Mathematical Statistics

Anna Janicka

Lecture VIII, 21.04.2022

CONFIDENCE INTERVALS

Plan for Today

Interval estimation - confidence intervals, different models

Summary: basic (point) estimator properties

Point estimators - statistics which are designed to provide a single value of the estimator. We can evaluate them in terms of:
\square bias
\square variance
\square MSE
\square efficiency
\square asymptotic unbiasedness
\square consistency
\square asymptotic normality
\square asymptotic efficiency

Interval estimation - confidence intervals

\square We do not provide a single value estimate, but rather a lower and an upper bound for the estimate (the true value will fit into these bounds with given probability)
\square We estimate with given precision

Confidence interval

Let $g(\theta)$ be a function of unknown parameter θ, and let $\bar{g}=\bar{g}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $\underline{g}=\underline{g}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be statistics

Then, $[\underline{g}, \bar{g}]$ is a confidence interval for $g(\theta)$ with a confidence level 1- α, if for any θ

$$
P_{\theta}\left(\underline{g}\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq g(\theta) \leq \bar{g}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right) \geq 1-\alpha
$$

Confidence intervals - use and interpretation

\square Typically: α is a small number, for example $1-\alpha=0,95$ or $1-\alpha=0,99$
\square The condition from the definition means: the random interval $[\underline{g}, \bar{g}]$ includes the unknown value $g(\theta)$ with given (high) probability.
\square If we calculate the realization of the confidence interval (e.g. $g=1, \bar{g}=3$) then we CAN'T say that the unknown parameter is included in the range with probability $1-\alpha$ anymore!
the parameter is either in the interval or not - the event $\overline{\substack{\text { Wheanum ungeriry } \\ \text { Foculty of tisonomis sclences }}}$

Confidence intervals - construction

\square The confidence interval depends on the underlying probability distribution
\square Usually, normal samples are considered (the distribution most frequently observed in nature)

Confidence intervals - construction cont.

\square Convenient method: we look for random variables which depend on sample data and parameter values, but whose distributions do not depend on unknown parameters (pivotal method)
\square If $U=U\left(X_{1}, X_{2}, \ldots, X_{n}, \theta\right)$ is such a function, then we look for confidence intervals $[a, b]$ such that

$$
P_{\theta}(a \leq U \leq b) \geq 1-\alpha
$$

\square Usually we look for „symmetric" Cl

$$
P_{\theta}(U<a) \leq \frac{\alpha}{2}, \quad P_{\theta}(U>b) \leq \frac{\alpha}{2}
$$

Most commonly used models

■ Model I (normal): Cl for the mean, variance known
■ Model II (normal): CI for the mean, variance unknown
■ Model II (normal): CI for the variance

- Model III (asymptotic): CI for the mean

■ Model IV (asymptotic): CI for the fraction
■ Asymptotic model: CI based on MLE

CI for the mean - Model I

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right), \sigma^{2}$ is known.
The CI for μ, for a confidence level 1- α :

$$
\left[\bar{x}-u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ for the $N(0,1)$ distribution

CI for the mean - Model I, justification:

Point estimate for $\mu: \operatorname{MLE}(\mu)=\bar{X}$
We know the distribution of \bar{X} :

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right), \quad \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

We want: a Cl symmetric around the point estimate (the distribution of the normalized average is symmetric around 0). We have:
$P_{\mu}(|\sqrt{n}(\bar{X}-\mu) / \sigma| \leq u)=\Phi(u)-\Phi(-u)=2 \Phi(u)-1$

$$
\text { so } u=U_{1-\alpha / 2}
$$

Cl for the mean - Model I, properties

\square Error: $d=u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}$
\square Length of $\mathrm{Cl}: 2 d$
\square Sample size allowing to obtain a given precision (error) d:

$$
n \geq \frac{\sigma^{2} u_{1-\alpha / 2}^{2}}{d^{2}}
$$

CI Model I - example phrasing

In a survey of food expenditures for $n=400$ randomly chosen respondents, the average weekly amount spent on fruit amounted to $\$ 30$. From previous research, we know that the variance of fruit expenditures is equal to 5. Assuming that food expenditures are distributed normally, find a $95 \% \mathrm{Cl}$ for the average weekly amount spent.

CI for the mean - Model II

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right), \sigma^{2}$ is unknown.
The CI for μ, for a confidence level 1- α :

$$
\left[\bar{X}-t_{1-\alpha / 2}(n-1) \frac{S}{\sqrt{n}}, \bar{X}+t_{1-\alpha / 2}(n-1) \frac{S}{\sqrt{n}}\right]
$$

where $t_{1-\alpha / 2}(n-1)$ is a quantile of rank $1-\alpha / 2$ for a t-Student distribution with n - 1 degrees of freedom $t(n-1)$, and $S=\sqrt{S^{2}}$ for the unbiased variance estimator S^{2}.

CI for the mean - Model II, justification:

Point estimate for $\mu: \operatorname{MLE}(\mu)=\bar{X}$
We know the distribution of \bar{X} :
$\bar{X} \sim N\left(\mu, \sigma^{2} / n\right), \quad \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1), \quad T=\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t(n-1)$
We want: a Cl symmetric around the point estimate (the distribution of T is symmetric around 0). We have:

$$
\begin{gathered}
\left.P_{\mu, \sigma}| | \sqrt{n}(\bar{X}-\mu) / S \mid \leq t\right)=1-\alpha \\
\text { so } t=t_{1-\alpha / 2}(n-1)
\end{gathered}
$$

Cl for the mean - Model II, properties

\square Error: $\quad d=t_{1-\alpha / 2}(n-1) \frac{S}{\sqrt{n}}$
\square Length of $\mathrm{Cl}: 2 d$
\square Sample size allowing to obtain a given precision (error) d: to be determined on the base of the socalled Stein's two-stage procedure - we need a preliminary assessment of the variance first

Stein's two-stage procedure

1. We collect a preliminary sample $X_{1}, X_{2}, \ldots, X_{n 0}$ and estimate the variance:

$$
S_{0}^{2}=\frac{1}{n_{0}-1} \sum_{i=1}^{n_{0}}\left(X_{i}-\bar{X}_{0}\right)^{2}
$$

2. We check whether the sample fulfills the given condition: we calculate $k=\frac{S_{0}^{2}\left[t_{1-\alpha / 2}\left(n_{0}-1\right)\right]^{2}}{d^{2}}$
a) if $n_{0} \geq k$ then we take the Cl

$$
\left[\bar{X}_{0}-t_{1-\alpha / 2}\left(n_{0}-1\right) \frac{S_{0}}{\sqrt{n_{0}}}, \bar{X}_{0}+t_{1-\alpha / 2}\left(n_{0}-1\right) \frac{s_{0}}{\sqrt{n_{0}}}\right]
$$

b) if $n_{0}<k$ then we choose $n \geq k$ and draw an additional sample of $X_{n 0+1}, X_{n 0+2}, \ldots, X_{n}$. We calculate the mean for the whole sample $X_{1}, X_{2}, \ldots, X_{n}$, and take the CI

$$
\left[\bar{X}-t_{1-\alpha / 2}\left(n_{0}-1\right) \frac{S_{0}}{\sqrt{n}}, \bar{X}+t_{1-\alpha / 2}\left(n_{0}-1\right) \frac{S_{0}}{\sqrt{n}}\right]
$$

CI Model II - example phrasing

In a survey of food expenditures for $n=400$ randomly chosen respondents, the average weekly amount spent on fruit amounted to $\$ 30$, and the variance of fruit expenditures amounted to 5. Assuming that food expenditures are distributed normally, find a 95\% Cl for the average weekly amount spent.

Phrasing examples (exam 2015)

1. Mortgage values from applications in Bank ABC were analyzed. Previous analyses have shown that the mortgage value may be described by a normal distribution with a standard deviation of 100 thousand dollars. The mean mortgage value in a sample of 36 consumers was equal to 440 thousand dollars.

- The realization of a 95% confidence interval for the mean mortgage value is
- Data were analyzed further, and it appeared that indeed, in the studied sample the standard deviation (calculated on the base of the unbiased estimator of the variance) was equal to 100 thousand dollars. One of the bank employees proposed to use the sample standard deviation to calculate the confidence interval. In this case, the realization of a 95% confidence interval for the mean mortgage value is
and this interval is LONGER /THE SAME LENGTH /SHORTER (underline the appropriate) than the confidence interval from the previous point.

Cl for the variance - Model II

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$
Cl for σ^{2}, for a confidence level 1- α :

$$
\left[\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}\right]
$$

where $\chi_{\alpha / 2}^{2}(n-1)$ and $\chi_{1-\alpha / 2}^{2}(n-1)$ are quantiles of rank $\alpha / 2$ and $1-\alpha / 2$, respectively, for a chi-square distribution with $n-1$ degrees of freedom

CI for the variance - Model II, justification

Point estimate for $\sigma^{2}: S^{2}$
We know the distr.: $U=\frac{(n-1)}{\sigma^{2}} S^{2} \sim \chi^{2}(n-1)$
The chi-square distribution is not symmetric. We want a „symmetric" Cl , i.e. we look for $[a, b]$ such that
so

$$
P_{\sigma^{2}}(U<a)=\frac{\alpha}{2}, \quad P_{\sigma^{2}}(U>b)=\frac{\alpha}{2}
$$

$$
a=\chi_{\alpha / 2}^{2}(n-1) \text { and } b=\chi_{1-\alpha / 2}^{2}(n-1)
$$

CI for the mean - Model III

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with mean μ and variance, n - large. Approximate Cl for μ, for a confidence level 1- α :

$$
\left[\bar{X}-u_{1-\alpha / 2} \frac{S}{\sqrt{n}}, \bar{X}+u_{1-\alpha / 2} \frac{S}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank 1- $\alpha / 2$ from the $\mathrm{N}(0,1)$ distribution, $S=\sqrt{S^{2}}$ for the unbiased estimator of the variance S^{2}. Justification: from CLT, when $n \rightarrow \infty$ we have

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \xrightarrow{D} N(0,1)
$$

CI for the fraction - Model IV

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a two-point distribution, n - large.

$$
P_{p}(X=1)=p=1-P_{p}(X=0)
$$

Approximate Cl for p, for a confidence level 1- α :

$$
\left[\hat{p}-u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \hat{p}+u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from the $N(0,1)$ distribution

CI for the fraction - Model IV, justification

The point estimate for the fraction p :

$$
\hat{p}=\operatorname{MLE}(p)=\bar{X}
$$

We know the asymptotic distribution: from CLT, when $n \rightarrow \infty$, we have

$$
U=\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p})}} \sqrt{n} \xrightarrow{D} N(0,1)
$$

Using U, just like in model I, we get the formula.

Cl for the fraction - Model IV, properties

\square Assessment error: $d=u_{1-\alpha / 2} \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$
\square Sample size allowing to obtain a given precision (error) d:

$$
n \geq \frac{\hat{p}(1-\hat{p}) u_{1-\alpha / 2}^{2}}{d^{2}}
$$

if we do not know anything about p, we need to consider the worst scenario
where $p=1 / 2$:

$$
n \geq \frac{u_{1-\alpha / 2}^{2}}{4 d^{2}}
$$

$$
\text { e.g. } 1,645^{2} /\left(4^{*} 0,025^{2}\right) \approx 1082
$$

CI on the base of the MLE - Asymptotic model

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with unknown parameter θ, n - large. If $\hat{\theta}=\operatorname{MLE}(\theta)$ is asymptotically normal with an asymptotic variance equal to $1 / 1 /(\theta)$, i.e.

$$
(\hat{\theta}-\theta) \sqrt{n} \xrightarrow{D} N(0,1 / 4(\theta))
$$

and if $I(\hat{\theta})=\operatorname{MLE}(I(\theta))$ is consistent:

$$
(\hat{\theta}-\theta) \sqrt{n I(\hat{\theta})} \xrightarrow{D} N(0,1)
$$

Approximate Cl for θ, for a confidence leyel 1- α :

$$
\left.\hat{\theta}-u_{1-\alpha / 2} \frac{1}{\sqrt{n I_{1}(\hat{\theta})}}, \hat{\theta}+u_{1-\alpha / 2} \frac{1}{\sqrt{n I_{1}(\hat{\theta})}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$

CI on the base of the MLE - Asymptotic model, general case

Asymptotic model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distr. with unknown parameter θ, n - large. If $g(\hat{\theta})=g(M L E(\theta))$ is asymptotically normal with an asymptotic variance equal to ${ }^{\left(g^{\prime}(\theta)\right)^{2}} / 4,(\theta)$, i.e.

$$
(\hat{\theta}-\theta) \sqrt{n} \xrightarrow{D} N\left(0,{ }^{\left(g^{\prime}(\theta)\right)^{2}} / L_{1}(\theta)\right)
$$

and if $I(\hat{\theta})=\operatorname{MLE}(I(\theta))$ is consistent:

$$
(\hat{\theta}-\theta) \sqrt{n I(\hat{\theta})} \xrightarrow{D} N(0,1)
$$

Approximate Cl for $g(\theta)$, for a confidence leyel 1- α :

$$
\left[g(\hat{\theta})-u_{1-\alpha / 2} \frac{\left|g^{\prime}(\hat{\theta})\right|}{\sqrt{n l_{1}(\hat{\theta})}}, g(\hat{\theta})+u_{1-\alpha / 2} \frac{\left|g^{\prime}(\hat{\theta})\right|}{\sqrt{n l_{1}(\hat{\theta})}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$

Cl on the base of the MLE - Example

Let $X_{1}, X_{2}, \ldots, X_{n}$ be an IID sample from a Poisson distr. with unknown parameter θ, n - large.
$\hat{\theta}=M L E(\theta)=\bar{X}$ is asymptotically normal (CLT) with an asymptotic variance equal to $1 / 4(\theta)=\theta$
$\hat{I}(\theta)=1 / \hat{\theta}$ behaves well.
Approximate Cl for θ, for a confidence level 1- α :

$$
\left[\bar{x}-u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}}, \bar{x}+u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$
For example, if for $n=900$ we had $\bar{X}=4$, then the $90 \% \mathrm{Cl}$ for θ would be $\approx|4-1.645 \sqrt{4 / 900}, 4+1.645 \sqrt{4 / 900}| \approx[3.89,4.11]$

CI on the base of the MLE - Example cont.

If we wanted to approximate the probability of the outcome $=0$, we would look for $g(\theta)=e^{-\theta}$
$g(\hat{\theta})=g(M L E(\theta))=e^{-\bar{x}}$
And the approximate Cl for $g(\theta)$, for a confidence level 1- α :

$$
\left[e^{-\bar{x}}-u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}} e^{-\bar{x}}, e^{-\bar{x}}+u_{1-\alpha / 2} \frac{\sqrt{\bar{x}}}{\sqrt{n}} e^{-\bar{x}}\right]
$$

where $u_{1-\alpha / 2}$ is a quantile of rank $1-\alpha / 2$ from $N(0,1)$
For example, if for $n=900$ we had $\bar{X}=4$, then the $90 \% \mathrm{Cl}$ for $g(\theta)$ would be

$$
\approx\left|e^{-4}-1.645 \sqrt{4 / 900} e^{-4}, e^{-4}+1.645 \sqrt{4 / 900} e^{-4}\right| \approx[0.016,0.020]
$$

2
Faculty of Economic Sciences

