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Plan for Today

1. Asymptotic properties of estimators
B asymptotic unbiasedness
B consistency
B asymptotic normality
B asymptotic efficiency

2. Consistency, asymptotic normality and
asymptotic efficiency of MLE estimators
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Asymptotic properties of estimators

L1 Limit theorems describing estimator
properties when n—oo

1 In practice: information on how the
estimators behave for large samples,
approximately

1 Problem: usually, there is no answer to the
guestion what sample is large enough (for
the approximation to be valid)




Consistency

Let X,, X,, ..., X, ,... be an IID sample (of
Independent random variables from the same

distribution) . Let g(X,, X,,..., X_) be a
sequence of estimators of the value g(8).
g is a consistent estimator, if for all 6O,
for any ¢ >0:

lim P, (| §( Xy, X0.rns X, )~ 9(0) [< £) =1

n

(.e. g converges to g(&) in probability)




Strong consistency

Let X,, X,, ..., X, ,... be an IID sample (of
Independent random variables from the same

distribution). Let g(X,, X,,..., X,) be a
sequence of estimators of the value g(8).

g is strong consistent, if for any O<O:
P@Q‘L‘Q@(vaz’---, Xn)=9(9)):1

(i.e. g converges to g(&) almost surely)




Consistency — note

From the Glivenko-Cantelli theorem it
follows that empirical CDFs converge
almost surely to the theoretical CDF.
Therefore, we should expect (strong)
consistency from all sensible estimators.

Consistency = minimal requirement for a
sensible estimator.
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Consistency — how to verify?

[1 From the definition: for example with the use
of a version of the Chebyshev inequality:

P(19(x)-9(0) ) < EOCL9O)
Given that the MSE of an estimator Is
MSE(6,9) = E,(9(X)-9(0))’
we get a sufficient condition for consistency:
limMSE (6,g) =0

N—0o0

[l From the LLN




Consistency — examples

[

For any family of distributions with an
expected value: the sample mean X _is a
consistent estimator of the expected value
u (0)=E,(X,). Convergence from the SLLN.
For distributions having a variance:
SZ=2>" (X, -X)* and s =1%" (X, - X)’
are ConS|stent estimators of the variance
o?(0)=Var,(X,). Convergence from the
SLLN.




Consistency — examples/properties

_1 An estimator may
Inconsistent; e.q.

ne unbilased but

(X, Xy, oy X )=X, as

an estimator of u (8)=E,(X,).

[J An estimator may be biased but
consistent; e.g. the biased estimator of
the variance or any unbiased consistent

estimator + 1/n.




Asymptotic normality

g(X,, X,,..., X )is an asymptotically normal
estimator of g(@), If for any O<® there exists
o24(60) such that, when n—ow

n(G(X,, X,..... X))~ 9(8))—2—>N(0,5*(6))

Convergence In distribution, I.e. for any a
hmP[*/(;)( (X, Xy, Xn)—g(e))gajzcb(a)

N—o0

in other words, the distribution ofg(X,, X,,..., X,)
is for large n similar to N(g(8),<)

R
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Asymptotic normality — properties

1 An asymptotically normal estimator is
consistent (not necessarily strongly).

1 A similar condition to unbiasedness — the
expected value of the asymptotic
distribution equals g(&) (but the estimator
does not need to be unbiased).

1 Asymptotic variance defined as ¢*(6)

or 6°(8)/ - the variance of the asymptotic
N distribution




Asymptotic normality —what it is not

_1 For an asymptotically normal estimator we
usually have:

E G(X, Xoreos X )—1225.0(6)
nvarg(X,, X,,...,X )—22 5 5°(0)

but these properties needn’t hold, because
convergence In distribution does not imply
convergence of moments.




Asymptotic normality — example

O Let X, X, ..., X, ,... be an |[ID sample from
a distribution with mean x and variance o2.
On the base of the CLT, for the sample
mean we have

Jn(X = 1)—25N(0,5?)

2
In this case the asymptotic variance, "A ,
IS equal to the estimator variance.




Asymptotic normality — how to prove it

In many cases, the following is useful:

Delta Method. Let T,, be a sequence of
random variables such that for n—o we have

Vn(T, - 1)—2>N(0,07)
and let h:R—R be a function differentiable at
point x such that h’(x)+#0. Then

Jn(h(T,)—h(x))—2—>N(0,52(h' ())*)

u, o are functions of ¢

/usually used when estimators are functions of statistics T,
\Aivhich-can-be*easily shown co converge on the base of CLT



Asymptotic normality — examples cont.

In an exponential model: MLE(A) = 1
From CLT, we get

Vn(X —1)—25N(0,%
so from the Delta Method for h(t)=1/t:

(= 2)—"-NO L (- 542)")

SO % IS an asymptotically normal (and
consistent) estimator of A.
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Asymptotic efficiency

For an asymptotically normal estimator
g(X, X,,..., X_) of g(@) we define asymptotic
efficiency as

(9'(9)fn
o’(8)-1 (8)
where o2(8)/n is the asymptotic variance, i.e.
for n—oo

In(G(X,, X,..... X,) —9(8))—2—>N(0,5*(6))

modification of the definition of efficiency
v eetothe limit. case, with the asymptotic
variance in place of the normal variance

as.ef(g) =

(9'(0))
a*(6)-1,(6)

as.ef(g) =

&



Relative asymptotic efficiency

Relative asymptotic efficiency for
asymptotically normal estimators

g,(X) and g,(X)
o,(0) as.ef(g,)
cl(0) as.ef(d,)

as.ef(d,,9,) =

Note. A less (asymptotically) efficient estimator may have
other properties, which will make it preferable to a more
efficient one.
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Relative asymptotic efficiency — examples.
Is the mean better than the median?
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Relative asymptotic efficiency — examples.
Is the mean better than the median?

Depends on the distribution!

a) normal model N(u, o2): o2 known
\/ﬁ(>_(—,u) ~—>N(0,07) asef(méd, >_<) _ % <1
Jn(méd - )—2—>N(0,%)

b) Laplace model Lapl(x, A) 2 known

\/ﬁ()?—;z)#)N(O,A—Z2
Vn(méd - 4)—2—>N(0,%
c) some distributions do not have a mean...

Theorem: For a sample from a continuous distribution with density f(x), the
sample median is an asymptotically normal estimator for the median m

(provided the density is continuous and #0 at point m):

/ Wamae Un od — D 1
W #uer  Foculty of Economic Sciences n (med m)—) N(O’ 4(f(m))2)

as.ef(méd, X)=2>1




Consistency of ML estimators

Let X, X,, ..., X,,... be a sample from a distribution
with density f,(x). If ® < R is an open set, and:

m all densities f, have the same support;

. d
B the equation _;InL(®)=0 has exactly one
solution, 6.

Then @ is the MLE(@) and it is consistent

Note. MLE estimators do not have to be unbiased!
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Asymptotic normality of ML estimators

Let Xy, Xy, ...y X,,... b€ & sample with density f,(x),
such that @ < R is open, and g Is a consistent
m.l.e. (for example, fulfills the assumptions of the
previous theorem), and

O dd;lnL(H) exists

B Fisher Information may be calculated, 0<I,(8)<w

B the order of integration with respect to x and derivation

with respect to & may be changed

then @ is asymptotically normal and

\M(é—ﬁ) D >N(0,57)
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Asymptotic normality of ML estimators

Additionally, if g:R—R is a function
differentiable at point 8, such that g’ (@) # 0,
and g(X,, X,,..., X.) is MLE(g(8)), then

Jﬁ(@(xl,xz,...,xn)_g(g)) ® 5N(O (9'(9)°

' 14(0)

)



Asymptotic efficiency of ML estimators

If the assumptions of the previous theorems
are fulfilled, then the ML estimator (of & or
g(@)) Is asymptotically efficient.




Asymptotic normality and efficiency of ML
estimators — examples

] In the normal model. the mean is an
asymptotically efficient estimator of u

L] In the Laplace model: the median is an
asymptotically efficient estimator of u




Summary: basic (point) estimator properties

L] bias

L] variance
L1 MSE

L] efficiency

[1 asymptotic unbiasedness
[] consistency
1 asymptotic normality

[1 asymptotic efficiency
A
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