Mathematical Statistics

Anna Janicka

Lecture VII, 07.04.2022

ESTIMATOR PROPERTIES, PART III (ASYMPTOTIC PROPERTIES)

Plan for Today

- 1. Asymptotic properties of estimators
 - asymptotic unbiasedness
 - consistency
 - asymptotic normality
 - asymptotic efficiency
- 2. Consistency, asymptotic normality and asymptotic efficiency of MLE estimators

Asymptotic properties of estimators

- □ Limit theorems describing estimator properties when $n \rightarrow \infty$
- In practice: information on how the estimators behave for large samples, approximately
- Problem: usually, there is no answer to the question what sample is large enough (for the approximation to be valid)

Consistency

Let $X_1, X_2, ..., X_n, ...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2, ..., X_n)$ be a sequence of estimators of the value $g(\theta)$. \hat{g} is a **consistent** estimator, if for all $\theta \in \Theta$, for any $\varepsilon > 0$:

 $\lim_{n\to\infty} P_{\theta}(|\hat{g}(X_1, X_2, ..., X_n) - g(\theta)| \le \varepsilon) = 1$

(i.e. \hat{g} converges to $g(\theta)$ in probability)

Let $X_1, X_2, ..., X_n, ...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2, \dots, X_n)$ be a sequence of estimators of the value $g(\theta)$. \hat{g} is strong consistent, if for any $\theta \in \Theta$: $P_{\theta}\left(\lim_{n \to \infty} \hat{g}(X_1, X_2, \dots, X_n) = g(\theta)\right) = 1$

(i.e. \hat{g} converges to $g(\theta)$ almost surely)

Consistency – note

From the Glivenko-Cantelli theorem it follows that empirical CDFs converge almost surely to the theoretical CDF. Therefore, we should expect (strong) consistency from all sensible estimators.

Consistency = minimal requirement for a sensible estimator.

Consistency – how to verify?

From the definition: for example with the use of a version of the Chebyshev inequality: $P(|\hat{g}(X) - g(\theta)| \ge \varepsilon) \le \frac{E(\hat{g}(X) - g(\theta))^2}{\varepsilon^2}$ Given that the MSE of an estimator is $MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^2$ we get a sufficient condition for consistency: $\lim MSE(\theta, \hat{g}) = 0$ $n \rightarrow \infty$ From the LLN

For any family of distributions with an expected value: the sample mean X_n is a consistent estimator of the expected value $\mu(\theta) = E_{\theta}(X_1)$. Convergence from the SLLN. □ For distributions having a variance: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ and $\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ are consistent estimators of the variance $\sigma^2(\theta) = \operatorname{Var}_{\theta}(X_1)$. Convergence from the SIIN.

Consistency – examples/properties

□ An estimator may be unbiased but inconsistent; e.g. $T_n(X_1, X_2, ..., X_n) = X_1$ as an estimator of $\mu(\theta) = E_{\theta}(X_1)$.

An estimator may be biased but consistent; e.g. the biased estimator of the variance or any unbiased consistent estimator + 1/n.

Asymptotic normality

 $\hat{g}(X_1, X_2, ..., X_n)$ is an **asymptotically normal** estimator of $g(\theta)$, if for any $\theta \in \Theta$ there exists $\sigma^2(\theta)$ such that, when $n \rightarrow \infty$

$$\sqrt{n}(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta)) \xrightarrow{D} \mathcal{N}(0, \sigma^2(\theta))$$

Convergence in distribution, i.e. for any a $\lim_{n \to \infty} P_{\theta} \left(\frac{\sqrt{n}}{\sigma(\theta)} (\hat{g}(X_1, X_2, ..., X_n) - g(\theta)) \le a \right) = \Phi(a)$ in other words, the distribution of $\hat{g}(X_1, X_2, ..., X_n)$ is for large n similar to $N(g(\theta), \frac{\sigma^2}{n})$

Asymptotic normality – properties

- An asymptotically normal estimator is consistent (not necessarily strongly).
- □ A similar condition to unbiasedness the expected value of the asymptotic distribution equals $g(\theta)$ (but the estimator does not need to be unbiased).
- **Asymptotic variance** defined as $\sigma^2(\theta)$
 - or $\sigma^2(\theta) / n$ the variance of the asymptotic distribution

Asymptotic normality – what it is not

For an asymptotically normal estimator we <u>usually</u> have:

$$E_{\theta}\hat{g}(X_{1}, X_{2}, \dots, X_{n}) \xrightarrow{n \to \infty} g(\theta)$$

$$n \operatorname{var} \hat{g}(X_{1}, X_{2}, \dots, X_{n}) \xrightarrow{n \to \infty} \sigma^{2}(\theta)$$

but <u>these properties needn't hold</u>, because convergence in distribution does not imply convergence of moments.

Asymptotic normality – example

□ Let $X_1, X_2, ..., X_n, ...$ be an IID sample from a distribution with mean μ and variance σ^2 . On the base of the CLT, for the sample mean we have

$$\sqrt{n}(\overline{X} - \mu) \xrightarrow{D} N(0, \sigma^2)$$

In this case the asymptotic variance, σ^2/n , is equal to the estimator variance.

Asymptotic normality – how to prove it

In many cases, the following is useful:

Delta Method. Let T_n be a sequence of random variables such that for $n \rightarrow \infty$ we have

$$\sqrt{n}(T_n - \mu) \xrightarrow{D} N(0, \sigma^2)$$

and let $h: \mathbb{R} \to \mathbb{R}$ be a function differentiable at point μ such that $h'(\mu) \neq 0$. Then

$$\sqrt{n}(h(T_n) - h(\mu)) \xrightarrow{D} N(0, \sigma^2(h'(\mu))^2)$$

 $\mu,~\sigma^{2}$ are functions of θ

usually used when estimators are functions of statistics T_n , which can be easily shown co converge on the base of CLT

Asymptotic normality – examples cont.

In an exponential model: $MLE(\lambda) = \frac{1}{\overline{X}}$ From CLT, we get $\sqrt{n}(\overline{X} - \frac{1}{\lambda}) \xrightarrow{D} N(0, \frac{1}{\lambda^2})$

so from the Delta Method for h(t)=1/t.

$$\sqrt{n}(\frac{1}{\overline{X}}-\lambda) \xrightarrow{D} N(0,\frac{1}{\lambda^2}\cdot(-\frac{1}{(1/\lambda)^2})^2)$$

so $\frac{1}{X}$ is an asymptotically normal (and consistent) estimator of λ .

Asymptotic efficiency

For an asymptotically normal estimator $\hat{g}(X_1, X_2, ..., X_n)$ of $g(\theta)$ we define **asymptotic** efficiency as

as.ef
$$(\hat{g}) = \frac{(g'(\theta))^2 n}{\sigma^2(\theta) \cdot I_n(\theta)},$$

where $\sigma^2(\theta)/n$ is the asymptotic variance, i.e. for $n \to \infty$

$$\sqrt{n(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta))} \xrightarrow{D} N(0, \sigma^2(\theta))$$

as.ef $(\hat{g}) = \frac{(g'(\theta))^2}{\sigma^2(\theta) \cdot I(\theta)}$

modification of the definition of efficiency to the limit case, with the asymptotic variance in place of the normal variance

Relative asymptotic efficiency

Relative asymptotic efficiency for asymptotically normal estimators $\hat{g}_1(X)$ and $\hat{g}_2(X)$

as.ef
$$(\hat{g}_1, \hat{g}_2) = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)} = \frac{\operatorname{as.ef}(\hat{g}_1)}{\operatorname{as.ef}(\hat{g}_2)}$$

Note. A less (asymptotically) efficient estimator may have other properties, which will make it preferable to a more efficient one.

Relative asymptotic efficiency – examples. Is the mean better than the median?

Warsaw University Faculty of Economic Sciences

Relative asymptotic efficiency – examples. Is the mean better than the median?

Depends on the distribution!

- a) normal model N(μ , σ^2): σ^2 known $\sqrt{n}(\overline{X} - \mu) \xrightarrow{D} N(0, \sigma^2)$
 - as.ef(mêd, X) = $\frac{2}{\pi} < 1$ $\sqrt{n}(\text{med}-\mu) \xrightarrow{D} N(0,\frac{\pi\sigma^2}{2})$
- b) Laplace model Lapl(μ, λ) λ known $\sqrt{n}(\overline{X}-\mu) \xrightarrow{D} N(0,\frac{2}{2})$ as.ef(mêd, X) = 2 > 1 \sqrt{n} (mêd – μ) \longrightarrow $N(0, \frac{1}{2})$
- some distributions do not have a mean... **C**)

Theorem: For a sample from a continuous distribution with density f(x), the sample median is an asymptotically normal estimator for the median m

(provided the density is continuous and $\neq 0$ at point *m*): $\sqrt{n}(\text{med}-m) \longrightarrow N(0,\frac{1}{4(f(m))^2})$

Let $X_1, X_2, ..., X_n,...$ be a sample from a distribution with density $f_{\theta}(x)$. If $\Theta \subseteq \mathbb{R}$ is an open set, and:

- all densities f_{θ} have the same support; ■ the equation $\frac{d}{d\theta} \ln L(\theta) = 0$ has exactly one solution, $\hat{\theta}$.
- Then $\hat{\theta}$ is the *MLE*(θ) and it is consistent

Note. MLE estimators do not have to be unbiased!

Asymptotic normality of ML estimators

Let $X_1, X_2, ..., X_n$,... be a sample with density $f_{\theta}(x)$, such that $\Theta \subseteq \mathbb{R}$ is open, and $\hat{\theta}$ is a consistent m.l.e. (for example, fulfills the assumptions of the previous theorem), and

 $\frac{d^2}{d\theta^2} \ln L(\theta) \text{ exists}$

Fisher Information may be calculated, $0 < I_1(\theta) < \infty$

• the order of integration with respect to x and derivation with respect to θ may be changed

then $\hat{\theta}$ is asymptotically normal and

$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{D} N(0,\frac{1}{l_1(\theta)})$$

Asymptotic normality of ML estimators

Additionally, if $g:\mathbb{R}\to\mathbb{R}$ is a function differentiable at point θ , such that $g'(\theta) \neq 0$, and $\hat{g}(X_1, X_2, ..., X_n)$ is $MLE(g(\theta))$, then

 $\sqrt{n}(\hat{g}(X_1, X_2, \dots, X_n) - g(\theta)) \xrightarrow{D} N(0, \frac{(g'(\theta))^2}{L(\theta)})$

Asymptotic efficiency of ML estimators

If the assumptions of the previous theorems are fulfilled, then the ML estimator (of θ or $g(\theta)$) is asymptotically efficient.

Asymptotic normality and efficiency of ML estimators – examples

□ In the normal model: the mean is an asymptotically efficient estimator of μ

□ In the Laplace model: the median is an asymptotically efficient estimator of μ

Warsaw University Faculty of Economic Sciences

Summary: basic (point) estimator properties

bias
variance
MSE
efficiency

- asymptotic unbiasedness
- consistency
- asymptotic normality

Faculty of Economic Sciences

