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Plan for Today

1. Asymptotic properties of estimators

◼ asymptotic unbiasedness

◼ consistency

◼ asymptotic normality

◼ asymptotic efficiency

2. Consistency, asymptotic normality and 

asymptotic efficiency of MLE estimators



Asymptotic properties of estimators

 Limit theorems describing estimator 

properties when n→

 In practice: information on how the 

estimators behave for large samples, 

approximately

 Problem: usually, there is no answer to the 

question what sample is large enough (for 

the approximation to be valid)



Consistency

Let X1, X2, ..., Xn ,... be an IID sample (of 

independent random variables from the same 

distribution) . Let be a 

sequence of estimators of the value g( ).       

is a consistent estimator, if for all , 

for any  >0:

(i.e.      converges to g( ) in probability)
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ĝ

1)|)(),...,,(ˆ(|lim 21 =−
→

 gXXXgP n
n

ĝ



Strong consistency

Let X1, X2, ..., Xn ,... be an IID sample (of 

independent random variables from the same 

distribution). Let be a 

sequence of estimators of the value g( ).        

is strong consistent, if for any :

(i.e.     converges to g( ) almost surely)
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Consistency – note

From the Glivenko-Cantelli theorem it 

follows that empirical CDFs converge 

almost surely to the theoretical CDF. 

Therefore, we should expect (strong) 

consistency from all sensible estimators.

Consistency = minimal requirement for a 

sensible estimator.



Consistency – how to verify?

 From the definition: for example with the use 

of a version of the Chebyshev inequality:

Given that the MSE of an estimator is 

we get a sufficient condition for consistency:

 From the LLN
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Consistency – examples

 For any family of distributions with an 

expected value: the sample mean      is a 

consistent estimator of the expected value   

 ( )=E (X1). Convergence from the SLLN.

 For distributions having a variance:                 

and 

are consistent estimators of the variance

 2( )=Var (X1). Convergence from the 

SLLN.
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Consistency – examples/properties

 An estimator may be unbiased but 

inconsistent; e.g. Tn(X1, X2, ..., Xn )=X1 as 

an estimator of  ( )=E (X1).

 An estimator may be biased but 

consistent; e.g. the biased estimator of 

the variance or any unbiased consistent 

estimator + 1/n.



Asymptotic normality

is an asymptotically normal

estimator of g( ), if for any  there exists 

 2( ) such that, when n→

Convergence in distribution, i.e. for any a

in other words, the distribution of                           

is for large n similar to   
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Asymptotic normality – properties

 An asymptotically normal estimator is 

consistent (not necessarily strongly).

 A similar condition to unbiasedness – the 

expected value of the asymptotic 

distribution equals g( ) (but the estimator 

does not need to be unbiased).

 Asymptotic variance defined as 

or               – the variance of the asymptotic 

distributionn
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Asymptotic normality – what it is not

 For an asymptotically normal estimator we 

usually have:

but these properties needn’t hold, because 

convergence in distribution does not imply 

convergence of moments.
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Asymptotic normality – example

 Let X1, X2, ..., Xn ,... be an IID sample from 

a distribution with mean  and variance  2. 

On the base of the CLT, for the sample 

mean we have

In this case the asymptotic variance,       ,           

is equal to the estimator variance.

),0()( 2 NXn D⎯→⎯−

n

2



Asymptotic normality – how to prove it

In many cases, the following is useful:

Delta Method. Let Tn be a sequence of 

random variables such that for n→ we have

and let h:R→R be a function differentiable at 

point  such that h’()0. Then

, 2 are functions of 

usually used when estimators are functions of statistics Tn, 

which can be easily shown co converge on the base of CLT
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Asymptotic normality – examples cont.

In an exponential model:

From CLT, we get

so from the Delta Method for h(t)=1/t:

so     is an asymptotically normal (and 

consistent) estimator of .
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Asymptotic efficiency

For an asymptotically normal estimator 

of g( ) we define asymptotic 

efficiency as

where  2( )/n is the asymptotic variance, i.e. 

for n→
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modification of the definition of efficiency 

to the limit case, with the asymptotic 

variance in place of the normal variance



Relative asymptotic efficiency

Relative asymptotic efficiency for 

asymptotically normal estimators

and 
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Note. A less (asymptotically) efficient estimator may have 

other properties, which will make it preferable to a more 

efficient one.



Relative asymptotic efficiency – examples.

Is the mean better than the median?



Relative asymptotic efficiency – examples.

Is the mean better than the median?

Depends on the distribution!

a) normal model N(,  2):

b) Laplace model Lapl(, )

c) some distributions do not have a mean...
Theorem: For a sample from a continuous distribution with density f(x), the 

sample median is an asymptotically normal estimator for the median m

(provided the density is continuous and 0 at point m):
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Consistency of ML estimators

Let X1, X2, ..., Xn,... be a sample from a distribution 
with density f (x). If   R is an open set, and:

◼ all densities f have the same support;

◼ the equation                 has exactly one 

solution,   .

Then     is the MLE( ) and it is consistent

Note. MLE estimators do not have to be unbiased!
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Asymptotic normality of ML estimators

Let X1, X2, ..., Xn,... be a sample with density f (x),  
such that   R is open, and       is a consistent 

m.l.e. (for example, fulfills the assumptions of the 

previous theorem), and

◼ exists

◼ Fisher Information may be calculated, 0<I1( )<

◼ the order of integration with respect to x and derivation 

with respect to  may be changed

then     is asymptotically normal and
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Asymptotic normality of ML estimators

Additionally, if g:R→R is a function 

differentiable at point , such that g’( )  0, 

and                            is MLE(g( )), then
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Asymptotic efficiency of ML estimators

If the assumptions of the previous theorems 

are fulfilled, then the ML estimator (of  or 

g( )) is asymptotically efficient.



Asymptotic normality and efficiency of ML 

estimators – examples

 In the normal model:  the mean is an 

asymptotically efficient estimator of 

 In the Laplace model: the median is an 

asymptotically efficient estimator of 



Summary: basic (point) estimator properties

 bias

 variance

 MSE

 efficiency

 asymptotic unbiasedness

 consistency

 asymptotic normality

 asymptotic efficiency




