Mathematical Statistics 2020 /2021, Problem set 4

Point estimation - different techniques

1. Let X denote the number of failures before the first success in a Bernoulli scheme with probability of success equal to θ, i.e. $P_{\theta}(X=k)=\theta(1-\theta)^{k}$, for $k=0,1, \ldots$. Find the method of moments estimator for θ, based on the mean. What will be the precise value of the estimator, if in a sample of n observations, the average number of failures is equal to 4 ? Find the method of moments estimator for θ, based on the variance. What will be the precise value of the estimator, if in a sample of n observations, the variance of the number of failures is equal to 20 ?
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with density

$$
f_{\theta}(x)= \begin{cases}\theta x^{\theta-1} & x \in(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

where $\theta>0$ is an unknown parameter.
Find the method of moments and method of quantiles estimators for θ (based on the mean and median, respectively) and the m.l.e. of θ.

Compare the values of the three estimators for a sample consisting of the following three observations: $\frac{1}{3}, \frac{1}{2}, \frac{5}{6}$.
3. The size of organisms from a specific population has a distribution with density $f_{\beta}(x)=\frac{x}{\beta^{2}} e^{-\frac{x}{\beta}}$ for $x>0$ (and 0 otherwise), where $\beta>0$ is an unknown parameter. A sample of n organisms is drawn. Find the m.l.e. of β, and the precise value of the estimator if the mean size in the sample is equal to 3.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with density $f_{a, b}(x)=a b x^{a-1} e^{-b x^{a}}$ for $x>0$ and 0 otherwise, where $b>0$ is an unknown parameter. Find the m.l.e. of b.
5. Fish in a lake, again. (Unknown number of N fish, m caught, marked and released, n caught again, among them X marked. - Problem 2 from Set 3) Find the m.l.e. for the total number of fish.

