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1. Fisher Information, the Information Inequality and Estimator Efficiency

In order to be able to solve the problem of finding the MVUE estimators introduced in the
last lecture, we will need to refer to the following definition:

Definition 1. If a statistical model with observations X1, X2, . . . , Xn and probability fθ fulfills
the following regularity conditions:

(1) Θ is an open 1-dimensional set;
(2) The support of the distribution {x : fθ(x) > 0} does not depend on θ;
(3) The derivative dfθ

dθ
exists;

we can define Fisher information (Information) for sample X1, X2, . . . , Xn:

In(θ) = Eθ
(
d ln fθ(X1, X2, . . . , Xn)

dθ

)2

.

Note that in the above definition, fθ may mean both a density function and a probability
mass function, and that we do not assume independence of observations. For the special case
when X1, X2, . . . , Xn are IID, we can write

In(θ) = nI1(θ),

where I1(θ) is the information connected with one observation.
In most cases, calculating Fisher Information from the definition may be computationally

complicated (the formula in the expected value is compound). In such cases, one can use an
alternative formula for In, which works in case of twice differentiable functions:

In(θ) = −Eθ
(
d2 ln fθ(X1, X2, . . . , Xn)

dθ2

)
.

The Fisher Information describes the amount of knowledge about the distribution (the
value of distribution parameters) that may be derived from a sample of size n. We can see
that the larger the absolute value of the second derivative of the log of the probability function
(i.e., the more steep the probability function), the larger the Fisher Information. Therefore,
if the density around θ is flat, then information from a single observation or a small sample
will not allow us to differentiate among possible values of θ. If the density around θ is steep,
the sample contributes a lot of knowledge leading to θ identification.

Examples of calculations:

(1) For the Poisson distribution Poiss(θ), we have fθ(x) = θx

x!
e−θ, and the logarithm

ln fθ(x) = −θ + x ln θ − ln(x!), so that

I1(θ) = Eθ
(
d ln fθ(x)

dθ

)2

=
∞∑
x=0

(x
θ
− 1
)2 θx

x!
e−θ =

∞∑
x=0

1

θ2
(x− θ)2 θ

x

x!
e−θ =

1

θ2
Varθ(X) =

1

θ
,

or, alternatively,

I1(θ) = −Eθ
(
d2 ln fθ(x)

dθ2

)
= −

∞∑
x=0

(
− x
θ2

) θx
x!
e−x =

∞∑
x=1

θx−2

(x− 1)!
e−θ =

∞∑
x=0

θx−1

x!
e−θ =

1

θ

∞∑
x=0

θx

x!
e−θ =

1

θ
.

(2) For an exponential distribution Exp(θ), we have fθ(x) = θe−θx for x > 0, and
ln fθ(x) = ln θ − θx, so that

I1(θ) = Eθ
(
d ln fθ(x)

dθ

)2

=

∫ ∞
0

(
1

θ
− x
)2

θe−θxdx = Varθ(X) =
1

θ2
,
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or, alternatively,

I1(θ) = −Eθ
(
d2 ln fθ(x)

dθ2

)
= −

∫ ∞
0

(
− 1

θ2

)
θe−θxdx =

1

θ2
.

(3) A uniform distribution over the interval (0, θ) does not fulfill the conditions which
allow calculating Fisher Information (the support of the distribution depends on θ!).
Therefore, although one can perform the calculations figuring in the definition of
Fisher Information (calculate the expected value of....), the result will not have the
usual meaning connected with the formula. Therefore, performing the calculations is
pointless.

We have said that Fisher Information describes the amount of knowledge conveyed by a
sample of size n. One may prove a strong result: this characteristic leads to the identification
of the minimum variance of an unbiased estimator for a given distribution function, in the
words of the

Theorem 1. The Cramér-Rao Information Inequality Let X = (X1, X2, . . . , Xn) be
observations from a joint distribution with density fθ(x), where θ ∈ Θ ⊆ R. If:

• T (X) is a statistic with a finite expected value, and EθT (X) = g(θ);
• Fisher information is well defined, In(θ) ∈ (0,∞);
• All fθ have the same support;
• The order of differentiating d/dθ and and integrating

∫
. . . dx may be reversed.

Then, for any θ:

VarθT (X) ≥ (g′(θ))2

In(θ)
.

As a special case, for g(θ) = θ, we get that for any unbiased estimator θ̂(X) of θ, we have

Varθθ̂(X) ≥ 1

In(θ)
.

The implications of the above theorem are sound: the MSE of an unbiased estimator (i.e.,
the variance of this estimator) cannot be lower than a given function of n, In(θ), which
depends on the distribution. Therefore, if the variance of an estimator is equal to the lower
bound of the information inequality, then this estimator is MVUE.

Examples:

(1) In the Poisson model, we have that X̄ is the MVUE of θ. We know that In(θ) =
nI1(θ) = n

θ
, and at the same time we have

1

In(θ)
=
θ

n
= Varθ(X̄).

(2) In the exponential model, we have that X̄ is the MVUE of 1
θ
. We know that In(θ) =

nI1(θ) = n
θ2

, and at the same time we have Varθ(X̄) = 1
n
VarX = 1

nθ2
. We are

estimating a function of θ: g(θ) = 1
θ
, for which g′(θ) = − 1

θ2
, so that we have

(−1/θ2)2

In(θ)
=

1/θ4

1/(n · θ2)
=

1

nθ2
= Varθ(X̄).

Unfortunately, the lower bound from the Information Inequality is not always attained
(depending on the distribution). This signifies that if an estimator has a variance exceeding
the lower bound of the inequality, it is not yet proof that this estimator is not MVUE. We may
encounter such a situation when dealing with the estimator of parameter θ in the exponential
model. Based on the properties of the Gamma distribution, one can show that 1

X̄
(the Method

of Moments and ML Estimator) is a biased estimator of θ, with Eθ
(

1
X̄

)
= n

n−1
θ. On this basis,

we can construct an unbiased estimator of θ as n−1
nX̄

. It can be shown that this latter estimator
is MVUE, although its variance is higher than the bound in the Cramér-Rao Inequality. This
is because in the case of the exponential distribution, the bound is never attained.
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Based on the definition of the Fisher Information and the Cramér-Rao Inequality, we can
describe the extent to which an estimator uses the knowledge conveyed by the data sample,
by introducing the following concept of efficiency.

Definition 2. The efficiency of an unbiased estimator ĝ(x) of g(θ) is

ef(ĝ) =
(g′(θ))2

Varθ(ĝ) · In(θ)
.

The relative efficiency of two unbiased estimators, ĝ1 and ĝ2 is

ef(ĝ1, ĝ2) =
Varθ(ĝ2)

Varθ(ĝ1)
=

ef(ĝ1)

ef(ĝ2)
.

The definition of the efficiency of an estimator is based on the constatation that the smaller
the variance of an (unbiased) estimator, the better it uses data. If an estimator has a variance
as small as the Information Inequality bound, this means that it makes optimal use of the
data. If the assumptions of the Cramér-Rao Inequality are fulfilled (this depends on the
distribution, not the estimator), then it follows that the efficiency of any unbiased estimator
does not exceed 1. If the efficiency is equal to 1 (the estimator is efficient), then this means
that the estimator is also MVUE. However, if the efficiency of an estimator is strictly less than
1, then this does not yet necessarily mean that the estimator is not MVUE (it may or may not
be MVUE, depending on the distribution). Note that when calculated for distributions which
do not fulfill the Information Inequality assumptions (for example, a uniform distribution
over the interval (0, θ)), the “efficiency” may be found to be greater than 1, but this result is
meaningless (the formulas do not have the meaning they were defined to have).

Examples:

(1) In the Poisson model, the X̄ estimator of θ is efficient.
(2) In the exponential model, the X̄ estimator of 1

θ
is efficient.

(3) In the exponential model, the 1
X̄

estimator of θ is biased. However, as we have said

above this bias may easily be eliminated by multiplying by a constant: n−1
nX̄

. This
MVUE estimator is not efficient.

2. Asymptotic properties of estimators

Until now, we have not discussed the effect of sample size on the properties of estimators
– i.e., apart from noting that the bias of the biased estimator of the variance (Ŝ2) tends to
0 when n tends to infinity, we have just performed analyses based on a fixed sample size. If
an estimator has the desirable characteristics regardless of sample size – perfect. However,
in many cases, estimators do not behave as well for small samples as we would like them
to, i.e. they are not unbiased or not efficient. In this case, the question arises: what would
happen, if instead of a small sample, we had a large sample at our disposal? This leads to
the discussion of the so-called asymptotic properties of estimators. These properties are in
most cases governed by different versions of limit theorems; the practical use is assessing the
(approximate) properties of estimators for large samples, although usually it is very hard to
say what sample is “large enough” for the approximations to be good.

In what follows, instead of considering estimators, we will be in fact considering sequences of
estimators, based on larger and larger samples. I.e., if were to study the asymptotic properties
of the empirical mean estimator, we would be in fact dealing with a sequence of estimators
based on increasing samples: X1, X1+X2

2
, X1+X2+X3

3
, . . . , X1+X2+...+Xn

n
, . . . . For simplicity,

however, in most cases we will omit the sample size annotation (and use the notation X̄,
etc.).

2.1. Asymptotic unbiasedness.

Definition 3. We will say that an estimator ĝ(X) of the value g(θ) is asymptotically
unbiased, if b(θ) −−−→

n→∞
0.
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Any unbiased estimator is also obviously asymptotically unbiased. The biased estimator of
the variance is asymptotically unbiased (i.e., for large samples, it behaves approximately just
as well as the unbiased estimator).

2.2. Consistency.

Definition 4. Let X1, X2, . . . be an IID sample. Let ĝ be a sequence of estimators of the value
g(θ). ĝ is consistent, if for all θ ∈ Θ, for any ε > 0 we have

lim
n→∞

Pθ(|ĝ(X1, X2, . . . , Xn)− g(θ)| ≤ ε) = 1

(i.e. ĝ converges to g(θ) in probability).
ĝ is strongly consistent, if for all θ ∈ Θ, we have

Pθ
(

lim
n→∞

g(X1, X2, . . . , Xn) = g(θ)
)

= 1

(i.e. ĝ converges to g(θ) almost surely).

Note that from the Glivenko-Cantelli theorem it follows that empirical cumulative distri-
bution functions connected with samples increasing in size converge almost surely to the
theoretical CDF, which means that the empirical distribution reflects the theoretical distri-
bution for large samples. Therefore, we should expect (strong) consistency from all sensible
estimators – if an estimator is not consistent, then this means it does not fulfill this minimal
requirement and therefore should not be used.

Verification of consistency is usually not too hard in practice. First of all, in many cases it
can be derived on the base of the Laws of Large Numbers. Second, it can be checked from
the definition – for example, with the use of a version of the Chebyshev inequality1:

P(|ĝ(X)− g(θ)| ≥ ε) ≤ E(ĝ(X)− g(θ))2

ε2
.

Given that the MSE of an estimator is

MSE(θ, ĝ) = Eθ(ĝ(X)− g(θ))2 = Varθĝ + b2(θ),

we get a sufficient condition for consistency:

lim
n→∞

MSE(θ, ĝ) = 0.

In other words, if we show that the MSE of an estimator tends to 0 as sample size increases,
this means that the estimator is consistent.2

Examples:

(1) For any family of distributions with an expected value: the sample mean X̄ is a
consistent estimator of the expected value µ(θ) = Eθ(X1). Convergence (strong) may
easily be derived from the Laws of Large Numbers (strong).

(2) For distributions having a variance: Ŝ2 and S2 are consistent estimators of the variance
σ2(θ) = Varθ(X1). Convergence (strong) also stems from the Laws of Large Numbers
applied to the sum of squares of the random variables in the sample.

Note that consistency is not equivalent to unbiasedness. An estimator may be consistent
but biased (for example, the biased estimator of the variance), as well as unbiased but not
consistent (e.g. an estimator of the mean which uses just the first observation in the sample,
Tn(X1, X2, . . . , Xn) = X1 as an estimator of µ(θ) = Eθ(X1)).

1The formula is derived from the basic Chebyshev inequality in the same way as the Chebyshev-Bienaymé

inequality (the latter states that P(|X − EX| ≥ ε) ≤ E(X−EX)2

ε2 = VarX
ε2 ).

2Note that an estimator may be consistent even if the MSE does not tend to 0, as this is not a necessary
condition of consistency.
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