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1. INTRODUCTION TO MATHEMATICAL STATISTICS

During this lecture, we will introduce the concepts underlying mathematical statistics —
the methods of inference from data. First of all, we need to define the basic object that
will be under study — the statistical model (of the results of an experiment). In order to
be able to do that, we need some probabilistic foundations. The main assumption on which
we will base during this course is the following: the empirical data we observe and want
to explore reflect the functioning of a random mechanism. In other words, we assume that
the objects we will study — the collected data — will be the realizations of some random
variables, defined over some probabilistic spaces. The difference between probability calculus
and statistics lies in the knowledge, however; in the latter case, we usually know less about
the underlying model, but have empirical data at our disposal. In order to be able to infer
something from the data with statistical tools, we will need to make some assumptions about
the (usually unknown!) distributions of the random variables under study. These assumptions
will likely reflect theoretical implications or results of existing studies; the correctness of these
assumptions will limit the results and translate to the validity of statistical considerations.

It will be useful to illustrate the difference between the probabilistic and the statistical
approaches with an example. Assume that an item is produced in a facility, and that the
process of production may lead to defective output. Now, if we were to look at this experiment
from the perspective of probability calculus, we would do the following. First of all, we would
need to specify the problem. The phrasing could be as follows: assume that in a production
process each produced unit may be either good or defective; the result is random. Each
item may be defective with probability 10%, independently of the defectiveness of all other
produced items. Second, we would need to specify the question that we want to answer, for
example: What is the chance that in a batch of 50 items, exactly 6 will be defective? What is
the average number of defective elements in a batch of 507 What is the most probable number
of defective elements in a batch of 507 etc. Third, in order to solve the problem, we would
introduce a probabilistic model. In this case, we would usually describe the situation with the
use of a Bernoulli scheme, with the number of trials, n, equal to 50, and the probability of
success in a single trial, p, equal to 0.1. Note that if we wanted to answer different questions, for
example dealing with the order of the appearance of faulty elements (What is the probability
that the first item will be good, but the next four will be defective?), we would need a
different model — usually one where the probability space includes all possible outcomes (of
the Bernoulli scheme) understood as series of 0s (good items) and 1s (faulty items). Therefore,
even in case of this simple example, we see that depending on the different questions we may
want to answer, we may have different model specifications.

If we were to look at the problem from the statistical perspective, the emphasis would
be elsewhere. First, as far as the phrasing of the problem is concerned, we would likely see
something like the following: an inspector verified a set of randomly chosen items produced
in a facility, noting whether the items were defective (1) or good (0). In a batch of 50 items,
he obtained the following results:

01000000010000100000000000000001000000000100000001

Second, typical questions to be asked would include the following: based on the results ob-
tained, and assuming that the defectiveness of elements is independent of each other, how
would we assess the (unknown) probability that an element is defective? In view of the ob-
tained results, is it possible that the level of defectiveness is equal to 10%, as the producer
declares? Third, in order to solve the problem, we would introduce a statistical model:

Definition 1. A statistical model is a triple (X, Fx, P), where

X is the space of values of the observed random variable(s);
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Fx is the o-algebra of measurable events on X ; and
P is a family of probability distributions over (X, Fx), Py, indexed by a parameter € O.

Note that this definition differs from the definition of a probabilistic model in that the
probability distribution is not defined unequivocally, but rather as a family of distributions,
among which we will want to find the correct one (the one closest to the data). Throughout
this course we will use a simplified version of the definition, however, and skip the declaration
of o-algebras for the sample spaces, assuming always the usual case (all subsets of the sample
space in discrete cases, Borel subsets in case of continuous experiments). Therefore, we will be
providing the specification of the statistical models in a less formal way, namely by providing
(X, P,0):

X — the space of values of the observed random variable;

P — the family of probability distributions, Fy; and

© — the range of values for the unknown parameter 6.

In most cases, the range of values for the observations X will be an n-dimensional space,
since we will need one dimension for each observation available for analysis. In our production
example, we could specify the model in the following ways:

(1) If we record the results for all items separately, as above, the sample space X will
be equal to all possible outcomes of the observations, namely all n = 50 element
series consisting of Os and 1s, i.e. X = {0,1}". Further, we would assume that all
elements are independent, behave identically and have equal unknown probability of
being defective, § € [0,1], so the unknown probability distribution describing the
probability of observing a given outcome (z1,2s,...,2,) € X would be specified by
the joint distribution

Pg(Xl = LUI,XQ = To,... ,Xn = In) = H@%(l — 6)1_mi = 92%(1 — 6)"‘2%7
i=1
where in the case of the data specified above we would have Xy = X719 = X5 = X530 =
X42 = X50 = ]., and all other Xz =0.
(2) On the other hand, if we only recorded the total number of defective elements X, rather
than the particular outcomes, we would describe the experiment with the following
model: X = {0,1,...,n} and

Py(X =) = (“) 6°(1 — g)"—=

X

for # € [0,1]. In the case of our observations, we would have n = 50 and X = 6.

Regardless of which of the formulations above we use, in the production example we have
one unknown parameter — 6 — whose value “pinpoints” one of the distributions from the
assumed family of distributions. In many practical examples, and in order to be able to
answer the questions formulated, we will be interested in assessing the value of this unknown
parameter. This assessment procedure is referred to as estimation, and may be directed either
at providing a single value for 6 (point estimation), or providing a range of possible values for
6 (interval estimation, providing so-called confidence intervals). We will broadly discuss the
different methods of estimation and their properties during this course. Furthermore, we may
also be interested in verifying some additional statements about the distribution (perhaps
about the precise value of 6 — like, is it credible that § = 0.1)? This procedure is called
hypothesis testing, and we will also discuss such methods later on this semester.

At this point we will just signal that both estimation and hypothesis testing will be con-
ducted based on calculations of so-called statistics. By a statistic we will understand any
function of the observed random variables, i.e. any function 7" = T'(X;, Xs,..., X,,) of the
data Xy, Xs,..., X, (as a function of random variables, 7" is a random variable). Note that
we do not allow 7" to depend on the unknown distribution parameter(s)  — we must be able
to calculate a statistic based on data only. Note however, that the distribution of the random

variable T' depends on the (true) distribution of the random variables X;. This means that
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although T does not have # appearing in the formula explicitly, the distribution of 7" depends
on the value of #. This observation will be the clou to the suggested methods of reasoning in
the case of both estimation and hypothesis testing.

Reverting to our production example, in the first formulation, we could define for example
the following statistics:

T =) X7 B:iZ&, R:iZ&—m
i=1 i=1 i=1

Based on the laws of large numbers, we would expect the statistic 75 to converge to the true
(unknown) value of #, and the statistic T3 to be zero if the true value of 6 is equal to 0.1 —
hinting as to how these statistics may be used later on. In the second formulation, we could
have

X X
T, = X2, T, = —, Ty="—-0.1
n n

(with analogous properties of T and T3).

What we need to stress at this point is that any reasoning conducted after the specification
of the statistical model depends on the specification (and its validity). In some cases, the
specification is not a source of concern — for example, if we were to repetitively toss a single
coin, we would not question the use of the Bernoulli scheme as a description of the experiment.
In most situations, however, the specification needs some attention. Can we be sure that the
probability that an item produced will be defective is the same for all elements? Perhaps
it becomes larger as time goes by? Perhaps the defects are not independent? etc. If not all
assumptions made are necessarily justified, we must be aware of the fact that this influences
the validity of the results of applying all statistical techniques afterwards.

The question of assuming the right distribution is especially pronounced in the case of
continuous data, where we may not even have certainty as to the type of distribution in
effect (can we assume that it is normal? Or perhaps we should consider some different class
of distributions?). For example, in many cases of experiments with continuous outcomes, a
typical assumption is that the underlying distribution is normal (on the base of the CLT, this
is not a bad choice since we can expect some statistics calculated for large samples, such as
sums or means, to resemble the normal distribution). What we need to be aware of, however,
is that even though in such cases we will be able to estimate the values of the parameters of
the normal distribution which best describes the data (i.e. the parameters 6 which give the
best distribution FPp), this will not be equivalent to proving that the data indeed comes from
a normal distribution. Until we positively test the assumptions made, we will only be allowed
to say that from the set of distributions Fp, one fits the data best; this is not equivalent to
saying that this distribution is the true distribution of the data.

Obviously, the art of modeling reality with mathematical tools is always the art of finding
a compromise between simplicity of calculations and results, and precise reproduction of
reality. Theoretically, there are no “constraints” for the family of distributions P with which
we will describe the distribution, so we could define it very generally, for example as “any
continuous distribution”. However, unless our aim is to test different model specifications, this
is seldom done, since in a general formulation where we have different classes of distributions
it may become extremely hard to pinpoint the best distribution (there is no “natural” value
of parameter 6 to estimate, the formulae become horrible, etc.).

We will conclude our introduction to statistical models by providing some additional exam-
ples.

(1) Periods of market growth: assume an analyst studies the length of periods of growth on
the stock market. She is interested in times of continuous growth (until the first fall),
measured in days. Assume that the times of growth, X, Xs, ..., X,, are independent
random variables from an exponential distribution with an unknown parameter \. For
this scenario, the statistical model would be:

X = (0,00)";
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The joint probability distribution may be specified either by the CDF:
P)\(Xl < .1}17X2 < To, ... ;Xn < .Cl]n) = H(l — 67)‘9”)
i=1
or by the density function:

f)\(lL‘l,[E27 . ’mn) — )\ne—)\zaw

for A > 0.

(2) Measurements with error: We repeat measuring a (physical) value p. Since our measu-
rement machine is not perfect, assume that the measurements are independent random
variables X1, X5, ..., X}, from a normal distribution with unknown parameters p and
o?. (In this case, the unknown parameter 6 is two-dimensional, § = (u,c).) Under
such assumptions, the statistical model would be:

X =R7%
The joint probability distribution may be specified by the density function

1\ 1 &
fu,a(xlwr% e axn) = ( ) €xXp <_M ;(LE% - U)2> )

2mo

for 6 such that p € R, 0 > 0.

2. THE NORMAL MODEL

In the previous section, we introduced the concept of a statistical model with some examples;
we also signalled that a commonly made assumption is that the modeled distributions are
normal, which means that analyses are frequently conducted for this set of assumptions. We
will therefore continue exploring the properties of the normal model.

Assume that X, X, ..., X, are independent random variables from a normal distribution
N (11, 0?). In many practical applications, we will be interested in the properties of different
statistics calculated for this model. The most commonly used statistics are: the sample mean

S
:E;&

and the sample variance
n

LS -3,
i=1
Note that in the denominator of the expression for the sample variance, the number of ob-
servations n is diminished by 1. The rationale behind this modification of the “standard”
formula for the variance are going to become clearer after exploring the properties of this
statistic (the bias of this estimator), which we will do in one of the next lectures. At this
point, we will just proceed with the given formula.

From the properties of the normal distribution, it follows that the sample mean has a
normal distribution with parameters p and o?/n. For the variance, the situation is slightly
more complicated; we can prove the following theorem:

%=

n—1

Theorem 1. Let X, Xs, ..., X, be independent random variables from a normal distribution
N(p,0?), and let X and S? denote the sample mean and variance, respectively. We have that:

\/ﬁ% ~ N(0,1) and (n — 1)5—; ~x2_,, and X and S? are independent.

Note that the number of degrees of freedom in the chi-square distribution is equal to n — 1,
although formally the variance is a (weighted) sum of n squares. We will not support this
statement with a formal proof, but some hints. Note that

no(X. — 2 SQ X _ 2
; o o o
=1
On the left hand side we have an expression which is part of the theoretical variance; it has

a chi-square distribution with n degrees of freedom (as a sum of squares of n standardized
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variables). On the right hand side we have a sum of the re-scaled sample variance and a square
of a standard normal variable (i.e. having a chi-square distribution with 1 degree of freedom).
Showing that the two items are independent is not an easy task (intuitively it is not clear,
since the variables depend on the same data and we even have the mean in the formula for the
variance!), but it can be done — and in this case, looking at the number of degrees of freedom
of the chi-square distribution on both sides of the equality we have that the standardized
sample variance has a chi-square distribution with n — 1 degrees of freedom.

Another distribution which often appears in connection with the normal model is the t-
Student distribution. This is the distribution of the random variable
V(X — )

S )

which, in the normal model with a sample size of n, is defined as having a t-Student distri-
bution with n — 1 degrees of freedom. Note that T is not a statistic (the value of p appears
in the formula), but this random variable is used for hypothesis testing (we will substitute a
value that is to be tested for p).

T =



