Mathematical Statistics

Anna Janicka

Lecture VI, 31.03.2022

PROPERTIES OF ESTIMATORS, PART II

Plan for Today

- 1. Fisher information
- 2. Information inequality
- 3. Estimator efficiency
- 4. Asymptotic estimator properties
 - consistency
 - asymptotic normality
 - asymptotic efficiency

Comparing estimators – reminder

 $\hat{g}_1(X)$ is **better** than (dominates) $\hat{g}_2(X)$, if

$$\forall \theta \in \Theta$$
 $MSE(\theta, \hat{g}_1) \leq MSE(\theta, \hat{g}_2)$

and

$$\exists \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) < MSE(\theta, \hat{g}_2)$$

an estimator will be better than a different estimator only if its plot of the MSE never lies above the MSE plot of the other estimator; if the plots intersect, estimators are incomparable

Comparing estimators – cont.

A lot of estimators are incomparable → comparing any old thing is pointless; we need to constrain the class of estimators

If we compare two unbiased estimators, the one with the smaller variance will be better

Minimum-variance unbiased estimator - reminder

We constrain comparisons to the class of unbiased estimators. In this class, one can usually find the best estimator:

 $g^*(X)$ is a minimum-variance unbiased estimator (MVUE) for $g(\theta)$, if

- \blacksquare $g^*(X)$ is an unbiased estimator of $g(\theta)$,
- for any unbiased estimator $\hat{g}(X)$ we have $Var_{\theta}g^*(X) \leq Var_{\theta}\hat{g}(X)$ for $\theta \in \Theta$

How can we check if the estimator has a minimum variance?

□ In general, it is not possible to freely minimize the variance of unbiased estimators – for many statistical models there exists a limit of variance minimization. It depends on the distribution and on the sample size.

Fisher information

If a statistical model with obs. X_1 , X_2 , ..., X_n and probability f_{θ} fulfills regularity conditions, i.e.:

- 1. Θ is an open 1-dimensional set.
- 2. The support of the distribution $\{x: f_{\theta}(x)>0\}$ does not depend on θ .
- 3. The derivative $\frac{df_{\theta}}{d\theta}$ exists.

we can define **Fisher information** (Information) for sample $X_1, X_2, ..., X_n$:

$$I_n(\theta) = E_{\theta} \left(\frac{d}{d\theta} \ln f_{\theta}(X_1, X_2, ..., X_n) \right)^2$$

Fisher information – what does it mean?

- It is a measure of how much a sample of size n can tell us about the value of the unknown parameter θ (on average).
- If the density around θ is flat, then information from a single observation or a small sample will not allow to differentiate among possible values of θ . If the density around θ is steep, the sample contributes a lot of info leading to θ identification.

Fisher Information – cont.

Some formulae:

☐ if the distribution is continuous

$$I_n(\theta) = \int_{\mathcal{X}} \left(\frac{\frac{df_{\theta}(x)}{d\theta}}{f_{\theta}(x)} \right)^2 f_{\theta}(x) dx$$

☐ if the distribution is discrete

$$I_n(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} \left(\frac{\frac{dP_{\theta}(\mathbf{x})}{d\theta}}{P_{\theta}(\mathbf{x})} \right)^2 P_{\theta}(\mathbf{x})$$

 \square if f_{θ} is twice differentiable

$$I_n(\theta) = -E_{\theta} \left(\frac{d^2}{d\theta^2} \ln f_{\theta}(X_1, X_2, ..., X_n) \right)$$

Fisher information – cont. (2)

☐ If the sample consists of independent random variables from the same distribution, then

$$I_n(\theta) = nI_1(\theta)$$

where $I_1(\theta)$ is Fisher information for a single observation

Fisher Information – examples

 \square Exponential distribution $exp(\lambda)$

$$I_1(\lambda) = \dots = \frac{1}{\lambda^2}$$

 \square Poisson distribution Poiss(θ)

$$I_1(\theta) = \dots = \frac{1}{\theta}$$

Information Inequality (Cramér-Rao)

Let $X=(X_1, X_2, ..., X_n)$ be observations from a joint distribution with density $f_{\theta}(x)$, where $\theta \in \Theta \subseteq \mathbb{R}$. If:

- T(X) is a statistic with a finite expected value, and $E_{\theta}T(X)=g(\theta)$
- Fisher information is well defined, $I_n(\theta) \in (0,\infty)$
- \blacksquare All densities f_{θ} have the same support
- The order of differentiating $(d/d\theta)$ and integrating $\int dx$ may be reversed.

Then, for any
$$\theta$$
: $Var_{\theta}T(X) \ge \frac{(g'(\theta))^2}{I_n(\theta)}$

Information inequality – implications

- □ The MSE of an unbiased estimator (= the variance) cannot be lower than a given function of n and θ .
- ☐ If the MSE of an estimator is equal to the lower bound of the information inequality, then the estimator is MVUE.
- \square If $\hat{\theta}(X)$ is an unbiased estimator of θ , then

$$\operatorname{Var}_{\theta} \hat{\theta}(X) \ge \frac{1}{I_n(\theta)}$$

Information inequality – examples

- $Var_{\theta}(\overline{X}) = \frac{\theta}{n}$
- \square In the Poisson model, $\hat{\theta} = \overline{X}$ is MVUE(θ)
- \square In the exponential model, X is MVUE(1/ λ)

$$Var_{\lambda}(\overline{X}) = \frac{1}{n\lambda^2}$$

The Cramér-Rao inequality is not always optimal. In the exponential model, $\hat{\lambda} = 1/X$ is a biased estimator of λ .

 $\widetilde{\lambda} = \frac{n-1}{n\overline{X}}$

is an unbiased estimator, which is also MVUE(λ), although its variance is *higher* than the bound in the Cramér-Rao inequality.

Efficiency

The efficiency of an unbiased estimator

$$\hat{g}(X)$$
 of $g(\theta)$ is:

$$ef(\hat{g}) = \frac{(g'(\theta))^2}{Var_{\theta}(\hat{g}) \cdot I_n(\theta)}$$

Relative efficiency of unbiased estimators $\hat{g}_1(X)$ and $\hat{g}_2(X)$:

$$\operatorname{ef}(\hat{g}_{1},\hat{g}_{2}) = \frac{\operatorname{Var}_{\theta}(\hat{g}_{2})}{\operatorname{Var}_{\theta}(\hat{g}_{1})} = \frac{\operatorname{ef}(\hat{g}_{1})}{\operatorname{ef}(\hat{g}_{2})}$$

Efficiency and the information inequality

- ☐ If the information inequality holds, then for any unbiased estimator $ef(\hat{g}) \le 1$
- ☐ If $\hat{g} = \text{MVUE}(g)$, then it is possible that ef $(\hat{g}) = 1$, but it is also possible that ef $(\hat{g}) < 1$
- ☐ If $ef(\hat{g}) = 1$, then the estimator is efficient.

Efficiency – examples

- \square In the Poisson model, $\hat{\theta} = \overline{X}$ is efficient.
- \square In the exponential model, X is an efficient estimator of $1/\lambda$.
- \square In the exponential model, $\hat{\lambda} = \frac{n-1}{n\overline{X}}$

is not an efficient estimator of λ , although it is MVUE(λ).

 \square In a uniform model U(0, θ), for the MLE(θ) we get ef >1 (that is because the assumptions of the information inequality are not fulfilled)

Asymptotic poperties of estimators

- \square Limit theorems describing estimator properties when $n \rightarrow \infty$
- In practice: information on how the estimators behave for large samples, approximately
- ☐ Problem: usually, there is no answer to the question what sample is large enough (for the approximation to be valid)

Consistency

Let $X_1, X_2, ..., X_n,...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2,..., X_n)$ be a sequence of estimators of the value $g(\theta)$.

 \hat{g} is a **consistent** estimator, if for all $\theta \in \Theta$, for any $\varepsilon > 0$:

$$\lim_{n\to\infty} P_{\theta}(|\hat{g}(X_1,X_2,...,X_n)-g(\theta)|\leq \varepsilon)=1$$

(i.e. \hat{g} converges to $g(\theta)$ in probability)

Strong consistency

Let $X_1, X_2, ..., X_n,...$ be an IID sample (of independent random variables from the same distribution). Let $\hat{g}(X_1, X_2,..., X_n)$ be a sequence of estimators of the value $g(\theta)$.

 \hat{g} is **strong consistent**, if for any $\theta \in \Theta$:

$$P_{\theta}\left(\lim_{n\to\infty}\hat{g}(X_1,X_2,...,X_n)=g(\theta)\right)=1$$

(i.e. \hat{g} converges to $g(\theta)$ almost surely)

Consistency – note

From the Glivenko-Cantelli theorem it follows that empirical CDFs converge almost surely to the theoretical CDF. Therefore, we should expect (strong) consistency from all sensible estimators.

Consistency = minimal requirement for a sensible estimator.

Consistency – how to verify?

From the definition: for example with the use of a version of the Chebyshev inequality:

$$P(|\hat{g}(X) - g(\theta)| \ge \varepsilon) \le \frac{E(\hat{g}(X) - g(\theta))^2}{\varepsilon^2}$$

Given that the MSE of an estimator is

$$MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^{2}$$

we get a sufficient condition for consistency:

$$\lim_{n\to\infty} MSE(\theta,\hat{g}) = 0$$

From the LLN

Consistency – examples

- \square For any family of distributions with an expected value: the sample mean \overline{X}_n is a consistent estimator of the expected value $\mu(\theta)=E_{\theta}(X_1)$. Convergence from the SLLN.
- ☐ For distributions having a variance:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 and $\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ are consistent estimators of the variance $\sigma^2(\theta) = \text{Var}_{\theta}(X_1)$. Convergence from the SLIN.

Consistency – examples/properties

 \square An estimator may be unbiased but unconsistent; eg. $T_n(X_1, X_2, ..., X_n) = X_1$ as an estimator of $\mu(\theta) = E_{\theta}(X_1)$.

☐ An estimator may be biased but consistent; eg. the biased estimator of the variance or any unbiased consistent estimator + 1/n.

