Mathematical Statistics Anna Janicka

Lecture V, 24.03.2022

PROPERTIES OF ESTIMATORS, PART I

Plan for today

- Maximum likelihood estimation examples cont.
- 2. Basic estimator properties:
 - estimator bias
 - unbiased estimators
- 3. Measures of quality: comparing estimators
 - mean square error
 - incomparable estimators
 - minimum-variance unbiased estimator

MLE - Example

□ Normal model: X_1 , X_2 , ..., X_n are a sample from N(μ , σ^2). μ , σ unknown.

$$I(\mu,\sigma) = \ln\left(\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i}(x_i - \mu)^2\right)\right)$$
$$= -\frac{n}{2}\ln(2\pi) - n\ln\sigma - \frac{1}{2\sigma^2}\left(\sum_{i}x_i^2 - 2\mu\sum_{i}x_i + n\mu^2\right)$$

we solve

$$\begin{cases} \frac{\partial I}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} (\Sigma x_i^2 - 2\mu \Sigma x_i + n\mu^2) = 0 \\ \frac{\partial I}{\partial \mu} = \frac{1}{\sigma^2} \Sigma x_i - \frac{n\mu}{\sigma^2} = 0 \end{cases}$$

we get:

$$\hat{\mu}_{ML} = \overline{X}, \quad \hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i} (X_i - \overline{X})^2$$

Estimator properties

- ☐ Aren't the errors too large? Do we estimate what we want?
- \square $\hat{\theta}$ is supposed to approximate θ . In general: $\hat{g}(X)$ is to approximate $g(\theta)$.
- What do we want? Small error. But:
 - errors are random variables (data are RV)
 - → we can only control the expected value
 - \blacksquare the error depends on the unknown θ .
 - → we can't do anything about it...

Estimator bias

If $\hat{\theta}(X)$ is an estimator of θ :

bias of the estimator is equal to

$$b(\theta) = E_{\theta}(\hat{\theta}(X) - \theta) = E_{\theta}\hat{\theta}(X) - \theta$$

If $\hat{g}(X)$ is an estimator of $g(\theta)$:

bias of the estimator is equal to

$$b(\theta) = E_{\theta}(\hat{g}(X) - g(\theta)) = E_{\theta}\hat{g}(X) - g(\theta)$$

 $\hat{\theta}(X)/\hat{g}(X)$ is **unbiased**, if $b(\theta) = 0$ for $\forall \theta \in \Theta$

other notations, e.g.:

The normal model: reminder

Normal model: $X_1, X_2, ..., X_n$ are a sample from distribution $N(\mu, \sigma^2)$. μ, σ unknown.

Theorem. In the normal model, X and S^2 are independent random variables, such that $\overline{X} \sim N(\mu, \sigma^2/n)$

$$\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$$

In particular:

$$E_{\mu,\sigma}\overline{X}=\mu$$
, and $\mathrm{Var}_{\mu,\sigma}\overline{X}=\frac{\sigma^2}{n}$
 $E_{\mu,\sigma}S^2=\sigma^2$, and $\mathrm{Var}_{\mu,\sigma}S^2=\frac{2\sigma^4}{(n-1)}$

Estimator bias – Example 1

In a normal model:

$$\Box$$
 $\hat{\mu} = \overline{X}$

$$\square$$
 $\hat{\mu}_1 = X_1$

Estimator bias – Example 1

In a normal model:

 \square $\hat{\mu} = X$ is an unbiased estimator of μ :

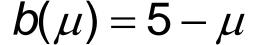
$$E_{\mu,\sigma}\hat{\mu}(X) = E_{\mu,\sigma}\overline{X} = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}n\mu = \mu$$

 \square $\hat{\mu}_1 = X_1$ is an unbiased estimator of μ :

$$E_{\mu,\sigma}\hat{\mu}_1(X) = E_{\mu,\sigma}X_1 = \mu$$

 \square $\hat{\mu}_2 = 5$ is biased:

$$E_{\mu,\sigma}\hat{\mu}_2(X) = E_{\mu,\sigma}5 = 5 \neq \mu$$
 eg for $\mu = 2$ bias:



Estimator bias – Example 1

In a normal model: any model with unknown mean μ :

 \square $\hat{\mu} = X$ is an unbiased estimator of μ :

$$E_{\mu,\sigma}\hat{\mu}(X) = E_{\mu,\sigma}\overline{X} = E_{\mu,\sigma}\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}n\mu = \mu$$

 \square $\hat{\mu}_1 = X_1$ is an unbiased estimator of μ :

$$E_{\mu,\sigma}\hat{\mu}_1(X) = E_{\mu,\sigma}X_1 = \mu$$

 \square $\hat{\mu}_2 = 5$ is biased:

$$E_{\mu,\sigma}\hat{\mu}_2(X) = E_{\mu,\sigma}5 = 5 \neq \mu$$
 eg for $\mu = 2$ bias:

$$b(\mu) = 5 - \mu$$

Estimator bias – Example 1 cont.

 $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is a biased}$ estimator of σ^2 :

$$E_{\mu,\sigma}\hat{S}^{2}(X) = E_{\mu,\sigma} \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n} E_{\mu,\sigma} (\sum X_{i}^{2} - n \overline{X}^{2})$$
$$= \frac{1}{n} (n(\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n)) = \sigma^{2} - \sigma^{2}/n \neq \sigma^{2}$$

 $\square S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is an } unbiased$ estimator of σ^2 :

$$E_{\mu,\sigma}S^{2}(X) = E_{\mu,\sigma} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} E_{\mu,\sigma} (\sum X_{i}^{2} - n\overline{X}^{2})$$
$$= \frac{1}{n-1} (n(\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n)) = \frac{1}{n-1} (\sigma^{2}(n-1)) = \sigma^{2}$$

Estimator bias – Example 1 cont.

 $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is a biased}$ estimator of σ^2 :

$$E_{\mu,\sigma}\hat{S}^{2}(X) = E_{\mu,\sigma} \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n} E_{\mu,\sigma} (\sum X_{i}^{2} - n \overline{X}^{2})$$
$$= \frac{1}{n} (n(\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n)) = \sigma^{2} - \sigma^{2}/n \neq \sigma^{2}$$

 $\square S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is an } unbiased$ estimator of σ^2 :

$$E_{\mu,\sigma}S^{2}(X) = E_{\mu,\sigma} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} E_{\mu,\sigma} (\sum X_{i}^{2} - n \overline{X}^{2})$$
$$= \frac{1}{n-1} (n(\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n)) = \frac{1}{n-1} (\sigma^{2}(n-1)) = \sigma^{2}$$

Estimator bias – Example 1 cont. (2)

Bias of estimator $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ is equal to

$$b(\sigma) = -\frac{\sigma^2}{n}$$

for $n \to \infty$, bias tends to 0, so this estimator is also OK for large samples

Asymptotic unbiased estimator

 \square An estimator $\hat{g}(X)$ of $g(\theta)$ is asymptotically unbiased, if

$$\forall \theta \in \Theta : \lim_{n \to \infty} b(\theta) = 0$$

How to compare estimators?

- □ We want to minimize the error of the estimator; the estimator which makes smaller mistakes is better.
- □ The error may be either + or -, so usually we look at the square of the error (the mean difference between the estimator and the estimated value)

Mean Square Error

If $\hat{\theta}(X)$ is an estimator of θ :

Mean Square Error of estimator $\hat{\theta}(X)$ is the function

$$MSE(\theta, \hat{\theta}) = E_{\theta}(\hat{\theta}(X) - \theta)^2$$

If $\hat{g}(X)$ is an estimator of $g(\theta)$:

MSE of estimator $\hat{g}(X)$ is the function

$$MSE(\theta, \hat{g}) = E_{\theta}(\hat{g}(X) - g(\theta))^{2}$$

Properties of the MSE

We have:

$$MSE(\theta, \hat{g}) = b^2(\theta) + Var(\hat{g})$$

For unbiased estimators, the MSE is equal to the variance of the estimator

MSE – Example 1

 $X_1, X_2, ..., X_n$ are a sample from a distribution with mean μ , and variance σ^2 . μ , σ unknown.

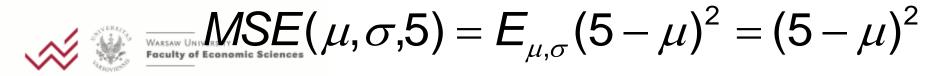
 \square MSE of $\hat{\mu} = X$ (unbiased):

$$MSE(\mu, \sigma, \overline{X}) = E_{\mu, \sigma}(\overline{X} - \mu)^{2} = Var_{\mu, \sigma}\overline{X} = \frac{\sigma^{2}}{n}$$

 \square MSE of $\hat{\mu}_1 = X_1$ (unbiased):

$$MSE(\mu, \sigma, X_1) = E_{\mu, \sigma}(X_1 - \mu)^2 = Var_{\mu, \sigma}X_1 = \sigma^2$$

 \square MSE of $\hat{\mu}_2 = 5$ (biased):



MSE – Example 2 Normal model

$$\square$$
 MSE of $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$MSE(\mu, \sigma, S^2) = E_{\mu, \sigma}(S^2 - \sigma^2)^2 = Var_{\mu, \sigma}S^2 = \frac{2\sigma^4}{n-1}$$

$$\square$$
 MSE of $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$MSE(\mu, \sigma, \hat{S}^2) = E_{\mu, \sigma}(\hat{S}^2 - \sigma^2)^2 = b^2(\sigma) + Var_{\mu, \sigma}\hat{S}^2$$

$$= \frac{\sigma^4}{n^2} + \frac{(n-1)^2}{n^2} \frac{2\sigma^4}{n-1} = \frac{2n-1}{n^2} \sigma^4$$

MSE – Example 2 Normal model

$$\square$$
 MSE of $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$MSE(\mu, \sigma, S^2) = E_{\mu, \sigma}(S^2 - \sigma^2)^2 = Var_{\mu, \sigma}S^2 = \frac{2\sigma^4}{n-1}$$

$$\square$$
 MSE of $\hat{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

$$MSE(\mu, \sigma, \hat{S}^{2}) = E_{\mu, \sigma}(\hat{S}^{2} - \sigma^{2})^{2} = b^{2}(\sigma) + Var_{\mu, \sigma}\hat{S}^{2}$$
$$= \frac{\sigma^{4}}{n^{2}} + \frac{(n-1)^{2}}{n^{2}} \frac{2\sigma^{4}}{n-1} = \frac{2n-1}{n^{2}} \sigma^{4}$$

MSE and bias – Example 3.

Poisson Model: X_1 , X_2 , ..., X_n are a sample from a Poisson distribution with unknown parameter θ .

$$\hat{\theta}_{ML} = ... = \overline{X}$$

$$b(\theta) = 0$$

$$MSE(\theta, \overline{X}) = Var_{\theta} \overline{X} = Var_{\theta} \frac{1}{n} \sum_{i=1}^{n} X_{i} = \frac{\theta}{n}$$

Comparing estimators

 $\hat{g}_1(X)$ is **better** than (dominates) $\hat{g}_2(X)$, if

$$\forall \theta \in \Theta$$
 $MSE(\theta, \hat{g}_1) \leq MSE(\theta, \hat{g}_2)$

and

$$\exists \theta \in \Theta \qquad MSE(\theta, \hat{g}_1) < MSE(\theta, \hat{g}_2)$$

an estimator will be better than a different estimator only if its plot of the MSE never lies above the MSE plot of the other estimator; if the plots intersect, estimators are **incomparable**

MSE – Example 1 again

 $X_1, X_2, ..., X_n$ are a sample from a distribution with mean μ , and variance σ^2 . μ , σ unknown.

- $\square \hat{\mu} = X$ (unbiased)
- \square $\hat{\mu}_1 = X_1$ (unbiased)
- \square $\hat{\mu}_2 = 5$ (biased)

- \square S^2 (unbiased)
- \square \hat{S}^2 (biased)

Comparing estimators – Examples cont.

We have

- □ From among $\hat{\mu} = X$ and $\hat{\mu}_1 = X_1$ $\hat{\mu}$ is better (for n>1)
- $\hat{\mu} = X$ and $\hat{\mu}_2 = 5$ are incomparable, just like $\hat{\mu}_1 = X_1$ and $\hat{\mu}_2 = 5$
- \square From among S^2 and \hat{S}^2 \hat{S}^2 is better

Comparing estimators – cont.

A lot of estimators are incomparable → comparing any old thing is pointless; we need to constrain the class of estimators

If we compare two unbiased estimators, the one with the smaller variance will be better

Minimum-variance unbiased estimator

We constrain comparisons to the class of unbiased estimators. In this class, one can usually find the best estimator:

 $g^*(X)$ is a minimum-variance unbiased estimator (MVUE) for $g(\theta)$, if

- \blacksquare $g^*(X)$ is an unbiased estimator of $g(\theta)$,
- for any unbiased estimator $\hat{g}(X)$ we have $Var_{\theta}g^*(X) \leq Var_{\theta}\hat{g}(X)$ for $\theta \in \Theta$

How can we check if the estimator has a minimum variance?

□ In general, it is not possible to freely minimize the variance of unbiased estimators – for many statistical models there exists a limit of variance minimization. It depends on the distribution and on the sample size.

