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Plan for today

1. Estimation
2. Sample characteristics as estimators

3. Estimation techniques
B method of moments
B method of quantiles
B maximum likelihood method
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Point Estimation

[J The choice, on the base of the data, of the
best parameter 6, from the set of
parameters which may describe P,

[J An Estimator of parameter & Is any
statistic T =T(X,, X,,..., X))

with values in ® (we interpret it as an A
approximation of &). Usually denoted by @

[1 Sometimes we estimate g(&) rather than 6.




Estimation: an example
Empirical frequency

Quality control example: §5650835000060000100000001
6 faulty elements out of 50
1 Model: £ ={0,1, 2, ..., n} (here n=50),

P,(X =X)= (2)6“(1_ oy for 6 €[0,1]

_1 parameter @ : probability of faulty element
71 an obvious estimator: @ = X/ =8,

n — sample size

X — number of faulty elements in sample

For a different model (all outcomes) the
estimator is an average
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Problems with (frequency) estimators...

Example: three genotypes in a population,
with frequencies 2 :20(1-6): (1- 6)?

In a population of size n, N; and N, and N,
iIndividuals of particular genotypes were
observed. Which estimator should we use?

hoose the best one?



Estimation — sample characteristics

Sample characteristics:

estimators based on the empirical
distribution (empirical CDF)
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Empirical CDF

O Let X;, X,, ..., X, be a sample from a
distribution given by F (modeled by {P¢})

(n-th) empirical CDF
- n number of observations X; : X; <t
F. (1) = %Zi:]_l(—oo,t](xi ) =

n

[1 For a given realization {X; } it Is a function of t,
the CDF of the empirical distribution (uniform
OVer X4, X,, ..., X,). FOr a given t it is a statistic

with a distribution ,
P(F(t)=%) = (kjF(t)k(l— Fa)"™, k=01...,n




Empirical CDF: properties

1. E.F (t)=F(t)
2. VarF,(t) = 1F(t)(1-F(t))

3. from CLT: F (t)-F(@) =
JF(@A-F(t)) “

: _ F.(0)—F(t)
l.e., for any z: P[JF(t)(l_F(t))ﬁﬁz%cD(z)

4. Glivenko-Cantelli Theorem
SUp | Ifn (t) — F(t) | a5, )O if sample size

teR increases, we will

for N > approximate the
unknown distribution
with any given level
of precision

——>N(0,1)




Order statistics

[ Let X;, X, ..., X, be a sample from a
distribution with CDF F. If we organize the
observations in ascending order:

X1 Koy -0y Xy <— Order statistics
(Xl:n — min’ Xn:n = max)

[1 An empirical CDF Is a stair-like function,
constant over intervals [X..,, Xi,1.n)




Distribution of order statistics

[l Let X;, X,, ..., X, be independent random
variables from a distribution with CDF F.
Then X,., has a CDF equal to

Fin (X) = P(X, . X) = i[ri]j(lz(x))i 1-Fx)"

L1 If additionally the distribution is continuous
with density f, then X,., has density

y 4

1 k-1 n—k
00 =n " FAF ) - Foo)




Sample moments and quantiles as estimators

Sample moments and quantiles are
moments and quantiles of the empirical
distribution, so they are estimators of the
corresponding theoretical values.

B sample mean = estimator of the expected
value

B sample variance = estimator of variance
B sample median = estimator of median
B sample quantiles = estimators of quantiles
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Method of Moments Estimation (MM)

[1 We compare the theoretical moments
(depending on unknown parameter(s)) to
their empirical counterparts.

L1 Justification: limit theorems

[J We need to solve a (system of)
eqguation(s).




EMM — cont.

1 1f @ Is single-dimensional, we use one

equation, usually: E X=X
1 If @1s two-dimensional, we use two
equations, usually: E,X =X,
<Var X =S?
11f 0 Is k- dlmenS|onaI we use k equations,
usually E,X =X,
Var,X =S?,

\

E (X —E,X)* =23 (X, = X)?,

CE,(X—E X)) =23 (X = X)X
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MME — Example 1.

[1 Exponential model: X, X,, ..., X, are a
sample from an exponential distr. Exp(A).

we know: E, X =

equation: 1

1_x
A

y
solution:

A =MME (1) = A, =%
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MME — Example 2.

[0 Gamma model: X, X,, ..., X, are a
sample from distr. Gamma(a,A).

24 04
We know: E, . X= ’ Var,, , X = —
System of equations:
Solution:
" X i X 2
Z'MM — S"Z y al\/lM — ?
2 far(x) = - x*le™* dla x > 0
\AY ” e



Method of Quantiles Estimation (MQ)

1 If moments are hard or impossible to
calculate or formulae are complicated, we
can use quantiles instead of moments. We
choose as many levels of p as we have
parameters, and we put

d,(0) =1,
or equivalently
FH(&p) — p




MQE — Example 1.

]

Exponential model: X,, X,, ..., X, are a
sample from an exponential distr. EXp(A).

CDF: F, =1-exp(—1Ax) for 2>0
one parameter — one equation, usually
for the median

1- exp(_ﬂq\uz) — %
solution:
In;  In2

MQE (4) = Ao =3 = e
1/2
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MQE — Example 2.

[1 Weibull Model: X, X, ..., X, are a sample

from a distribution with CDF for b=1
exponential
Fb’C =1— exp(_cxb) dislir. with

parameter C

where b, ¢ >0 are unknown parameters.

two parameters — two equations, usually
guartiles [1-— exp(—cq®,) =%

< ~
kl_ exp(_CQ3/4) =7

solution: A
MQE(b) =Dbyq = In("Yina-1n3)) /(IN Gy, —INC,4),
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Properties of MME and MQE estimators

[1 Simple conceptually
[J Not too complicated calculations

[J BUT: sometimes not optimal (large
errors, bad properties for small samples)

[] Better method (usually): maximum
likelihood




Maximum Likelihood Estimation (MLE)

We choose the value of @ for which the
obtained results have the highest probability

Likelihood — describes the (joint) probability f
(density or discrete probability) treated as a

function of @, for a given set of observations:;
L:®O—R

L(O) =1(E;X,,%X,,..., X))




Maximum Likelihood Estimator

6 =6(X,, X,,...,X_) is the MLE of 6, if
f(é(xl,xz,..., X )i Xy X yeeny X ) =
=supf(6; X, Xy, X))
0c®
for any x;, X5, ..., X,.
Denoted:

n n

6 =6, =MLE(®)
MLE(g(@)) = g(MLE(6))

py independence of observations not required in the
W N5, Faculty of Ecanomic Sciences definition, but greatly simplifies calculations



MLE — practical problems

1 Usually: sample of independent obs.

e 0) =1, (x)f, (%,).. £, (x,)

L1 If L(@) Is differentiable, and & is k-
dimensional, then the maximum may be

found by solving: 6:;29) 0, j=12..k
J
L1 very frequently: instead of max L(&) we
look for max 1(8) = In(L(8))
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MLE — Example 1.

[ Quality control, cont. We maximize
L(0) = P,(X =X) = (:‘Jexa—e)“
or equivalently maximize

I(@):In(

n

]+ IN(6”) + In((1— 6)"*) = |n@+ xIn(8) + (n— x) In(1— )

X

. X Nn— X
e. 1'(0) = — — =0
i.e. solve (0) 0 10

solution: MLE (9) _ éML _

S | X
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MLE — Example 2.

[1 Exponential model: X,, X,, ..., X, are a
sample from Exp(A1), A unknown.

We have:L(1) =f, (X, X,,..., X, ) = A'e™**

we maximize
(1) =InL(A) =nInA — AZX

we solve I'(Z):%—in:O




MLE — Example 3.

[1 Normal model: X, X,, ..., X, are a sample
from N(u, 02). 1, ounknown.

(0) = In(( 21”0)1 exp(_TiZZ(Xi _ﬂ)z))

:—gln(Zﬂ)—nlna—ﬁ(fo — 2 12X +ny2)
we solve
A= L(EX -2u2x +np’)=0

oo
o _ 1 o
=t 2X. 7 = 0

[ll\ll :X, 6!\21I :%Y(X. _X)Z
‘ d ! of
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