Mathematical Statistics Anna Janicka

Lecture IV, 17.03.2022

POINT ESTIMATION

Plan for today

- 1. Estimation
- 2. Sample characteristics as estimators
- 3. Estimation techniques
 - method of moments
 - method of quantiles
 - maximum likelihood method

Point Estimation

- The choice, on the base of the data, of the best parameter θ , from the set of parameters which may describe P_{θ}
- An **Estimator** of parameter θ is <u>any</u> statistic $T = T(X_1, X_2, ..., X_n)$ with values in Θ (we interpret it as an approximation of θ). Usually denoted by $\hat{\theta}$
- \square Sometimes we estimate $g(\theta)$ rather than θ .

Estimation: an example Empirical frequency

- \square parameter θ : probability of faulty element
- \square an obvious estimator: $\hat{\theta} = \frac{x}{n} = \frac{6}{50}$ n – sample size
 - X number of faulty elements in sample

Problems with (frequency) estimators...

Example: three genotypes in a population, with frequencies $\theta^2: 2\theta(1-\theta): (1-\theta)^2$

In a population of size n, N_1 and N_2 and N_3 individuals of particular genotypes were observed. Which estimator should we use?

(1)
$$\hat{\theta} = \sqrt{\frac{N_1}{n}} ?$$

(2) $\hat{\theta} = 1 - \sqrt{\frac{N_3}{n}} ?$

(2)
$$\hat{\theta} = 1 - \sqrt{N_3/n}$$
?

(3)
$$\hat{\theta} = \frac{N_1}{n} + \frac{1}{2} \frac{N_2}{n}$$
?

Maybe something else?

Estimation – sample characteristics

Sample characteristics:

estimators based on the empirical distribution (empirical CDF)

Empirical CDF

Let X_1 , X_2 , ..., X_n be a sample from a distribution given by F (modeled by $\{P_F\}$) (n-th) **empirical CDF**

$$\hat{F}_n(t) = \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{(-\infty,t]}(X_i) = \frac{\text{number of observations } X_i : X_i \le t}{n}$$

For a given realization $\{X_i\}$ it is a function of t, the CDF of the empirical distribution (uniform over $x_1, x_2, ..., x_n$). For a given t it is a statistic with a distribution $P(\hat{F}(t) = \frac{k}{n}) = \binom{n}{k} F(t)^k (1 - F(t))^{n-k}, \quad k = 0,1,...,n$

Empirical CDF: properties

1.
$$E_F \hat{F}_n(t) = F(t)$$

2.
$$Var \hat{F}_n(t) = \frac{1}{n} F(t) (1 - F(t))$$

3. from CLT:
$$\frac{\hat{F}_n(t) - F(t)}{\sqrt{F(t)(1 - F(t))}} \sqrt{n} \xrightarrow[n \to \infty]{} \mathcal{N}(0,1)$$

i.e., for any
$$z$$
: $P\left(\frac{\hat{F}_n(t) - F(t)}{\sqrt{F(t)(1 - F(t))}}\sqrt{n} \le z\right) \to \Phi(z)$

4. Glivenko-Cantelli Theorem

$$\sup_{t \in \mathcal{R}} |\hat{F}_n(t) - F(t)| \xrightarrow{a.s.} 0$$
for $n \to \infty$

if sample size increases, we will approximate the unknown distribution with any given level of precision

Order statistics

Let X_1 , X_2 , ..., X_n be a sample from a distribution with CDF F. If we organize the observations in ascending order:

$$X_{1:n}, X_{2:n}, ..., X_{n:n} \leftarrow \text{order statistics}$$

 $(X_{1:n} = \min, X_{n:n} = \max)$

 \square An empirical CDF is a stair-like function, constant over intervals $[X_{i:n}, X_{i+1:n}]$

Distribution of order statistics

Let X_1 , X_2 , ..., X_n be independent random variables from a distribution with CDF F. Then $X_{k:n}$ has a CDF equal to

$$F_{k:n}(x) = P(X_{k:n} \le x) = \sum_{i=k}^{n} \binom{n}{i} (F(x))^{i} (1 - F(x))^{n-i}$$

 \square If additionally the distribution is continuous with density f, then $X_{k:n}$ has density

$$f_{k:n}(x) = n \binom{n-1}{k-1} f(x) (F(x))^{k-1} (1 - F(x))^{n-k}$$

Sample moments and quantiles as estimators

Sample moments and quantiles are moments and quantiles of the empirical distribution, so they are estimators of the corresponding theoretical values.

- sample mean = estimator of the expected value
- sample variance = estimator of variance
- sample median = estimator of median
- sample quantiles = estimators of quantiles

Method of Moments Estimation (MM)

- □ We compare the theoretical moments (depending on unknown parameter(s)) to their empirical counterparts.
- Justification: limit theorems
- We need to solve a (system of) equation(s).

EMM - cont.

- □ If θ is single-dimensional, we use one equation, usually: $E_{\theta}X = \overline{X}$
- If θ is two-dimensional, we use two equations, usually: $\begin{cases} E_{\theta}X = \overline{X}, \\ \text{Var}_{\theta}X = \hat{S}^2 \end{cases}$
- ☐ If θ is k-dimensional, we use k equations, usually $\int E_{\theta}X = \overline{X}$,

$$\begin{cases} E_{\theta}X = \overline{X}, \\ \operatorname{Var}_{\theta}X = \hat{S}^{2}, \\ E_{\theta}(X - E_{\theta}X)^{3} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{3}, \\ \dots E_{\theta}(X - E_{\theta}X)^{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{k} \end{cases}$$

MME – Example 1.

 \square Exponential model: $X_1, X_2, ..., X_n$ are a sample from an exponential distr. Exp(λ).

we know:
$$E_{\lambda}X = \frac{1}{\lambda}$$

equation:
$$\frac{1}{2} = \overline{X}$$

solution:

$$\hat{\lambda} = MME(\lambda) = \hat{\lambda}_{MM} = \frac{1}{\overline{X}}$$

MME – Example 2.

 \square Gamma model: $X_1, X_2, ..., X_n$ are a sample from distr. Gamma(α, λ).

$$E_{\alpha,\lambda}X = \frac{\alpha}{\lambda}$$

We know:
$$E_{\alpha,\lambda}X = \frac{\alpha}{\lambda}$$
, $Var_{\alpha,\lambda}X = \frac{\alpha}{\lambda^2}$

System of equations:

$$\frac{\alpha}{\lambda} = \overline{X}, \quad \frac{\alpha}{\lambda^2} = \hat{S}^2$$

Solution:

$$\hat{\lambda}_{MM} = \frac{\overline{X}}{\hat{S}^2}, \quad \hat{\alpha}_{MM} = \frac{\overline{X}^2}{\hat{S}^2}$$

Method of Quantiles Estimation (MQ)

☐ If moments are hard or impossible to calculate or formulae are complicated, we can use quantiles instead of moments. We choose as many levels of *p* as we have parameters, and we put

$$q_{\rho}(\theta) = \widehat{q}_{\rho}$$

or equivalently

$$F_{\theta}(\widehat{q}_{p}) = p$$

MQE – Example 1.

 \square Exponential model: X_1 , X_2 , ..., X_n are a sample from an exponential distr. Exp(λ).

CDF:
$$F_{\lambda} = 1 - \exp(-\lambda x)$$
 for $\lambda > 0$

one parameter → one equation, usually for the median

$$1 - \exp(-\lambda \hat{q}_{1/2}) = \frac{1}{2}$$

solution:

$$MQE(\lambda) = \hat{\lambda}_{MQ} = -\frac{\ln\frac{1}{2}}{\hat{q}_{1/2}} = \frac{\ln 2}{\text{Med}}$$

MQE – Example 2.

☐ Weibull Model: X_1 , X_2 , ..., X_n are a sample from a distribution with CDF for b=1

$$F_{b,c} = 1 - \exp(-cx^b)$$

exponential distr. with parameter *c*

where b, c > 0 are unknown parameters.

two parameters → two equations, usually

quartiles
$$\begin{cases} 1 - \exp(-c\hat{q}_{1/4}^b) = \frac{1}{4} \\ 1 - \exp(-c\hat{q}_{3/4}^b) = \frac{3}{4} \end{cases}$$

solution:

$$MQE(b) = \hat{b}_{MQ} = \ln(\frac{\ln 4}{(\ln 4 - \ln 3)}) / (\ln \hat{q}_{3/4} - \ln \hat{q}_{1/4}),$$

Properties of MME and MQE estimators

- □ Simple conceptually
- □ Not too complicated calculations
- □ BUT: sometimes not optimal (large errors, bad properties for small samples)
- □ Better method (usually): maximum likelihood

Maximum Likelihood Estimation (MLE)

We choose the value of θ for which the obtained results have the highest probability

Likelihood – describes the (joint) probability f (density or discrete probability) treated as a function of θ , for a given set of observations; $L:\Theta \to \mathbb{R}$

$$L(\theta) = f(\theta; \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n)$$

Maximum Likelihood Estimator

$$\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n) \text{ is the MLE of } \theta, \text{ if}$$

$$f(\hat{\theta}(X_1, X_2, ..., X_n); X_1, X_2, ..., X_n) =$$

$$= \sup_{\theta \in \Theta} f(\theta; X_1, X_2, ..., X_n)$$
for any $X_1, X_2, ..., X_n$.

Denoted:

$$\hat{\theta} = \hat{\theta}_{ML} = MLE(\theta)$$

$$MLE(g(\theta)) = g(MLE(\theta))$$

MLE – practical problems

☐ Usually: sample of independent obs.

Then:

$$L(\theta) = f_{\theta}(\mathbf{x}_1) f_{\theta}(\mathbf{x}_2) ... f_{\theta}(\mathbf{x}_n)$$

- □ If $L(\theta)$ is differentiable, and θ is k-dimensional, then the maximum may be found by solving: $\frac{\partial L(\theta)}{\partial x} = 0$, j = 1,2,...,k
- \square very frequently: instead of max $L(\theta)$ we look for max $I(\theta) = \ln(L(\theta))$

MLE – Example 1.

Quality control, cont. We maximize

$$L(\theta) = P_{\theta}(X = x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x}$$

or equivalently maximize

$$l(\theta) = \ln\binom{n}{x} + \ln(\theta^x) + \ln((1-\theta)^{n-x}) = \ln\binom{n}{x} + x\ln(\theta) + (n-x)\ln(1-\theta)$$

i.e. solve
$$l'(\theta) = \frac{x}{\theta} - \frac{n-x}{1-\theta} = 0$$

solution:

$$MLE(\theta) = \hat{\theta}_{ML} = \frac{X}{n}$$

MLE – Example 2.

 \square Exponential model: X_1 , X_2 , ..., X_n are a sample from $\text{Exp}(\lambda)$, λ unknown.

We have:
$$L(\lambda) = f_{\lambda}(x_1, x_2, ..., x_n) = \lambda^n e^{-\lambda \sum x_i}$$

we maximize

$$I(\lambda) = \ln L(\lambda) = n \ln \lambda - \lambda \sum x_i$$

we solve

$$I'(\lambda) = \frac{n}{\lambda} - \Sigma x_i = 0$$

we get

$$\hat{\lambda}_{ML} = \frac{1}{\overline{X}}$$

MLE – Example 3.

□ Normal model: X_1 , X_2 , ..., X_n are a sample from N(μ , σ^2). μ , σ unknown.

$$I(\mu,\sigma) = \ln\left(\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_i(x_i - \mu)^2\right)\right)$$
$$= -\frac{n}{2}\ln(2\pi) - n\ln\sigma - \frac{1}{2\sigma^2}\left(\sum_i x_i^2 - 2\mu\sum_i x_i + n\mu^2\right)$$

we solve

$$\begin{cases} \frac{\partial I}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} (\Sigma x_i^2 - 2\mu \Sigma x_i + n\mu^2) = 0 \\ \frac{\partial I}{\partial \mu} = \frac{1}{\sigma^2} \Sigma x_i - \frac{n\mu}{\sigma^2} = 0 \end{cases}$$

we get:

$$\hat{\mu}_{ML} = \overline{X}, \quad \hat{\sigma}_{ML}^2 = \frac{1}{n} \sum (x_i - \overline{X})^2$$

