Mathematical Statistics

Anna Janicka

Lecture II,3.03.2022

DESCRIPTIVE STATISTICS, PART II

Plan for today

1. Descriptive Statistics, part II:

- median
- mode

■ quantiles

- measures of variability
- measures of asymmetry
- the boxplot

Measures of central tendency - reminder

\square Classic:

- arithmetic mean
\square Position (order, rank):
- median
- mode
- quartile

Example 1 - cont.

Grade	Number	Frequency
2	74	29.84%
3	76	30.65%
3.5	48	19.35%
4	31	12.50%
4.5	9	3.63%
5	10	4.03%
Total	248	100%

Example 3 - cont.

Interval	Class mark	Number	Frequency	Cumulative number cn	Cumulative frequency cf
$(30,40]$	35	11	0,11	11	0,11
$(40,50]$	45	23	0,23	34	0,34
$(50,60]$	55	33	0,33	67	0,67
$(60,70]$	65	12	0,12	79	0,79
$(70,80]$	75	6	0,06	85	0,85
$(80,90]$	85	8	0,08	93	0,93
$(90,100]$	95	3	0,03	96	0,96
$(100,110]$	105	2	0,02	98	0,98
$(110,120]$	115	2	0,02	100	1
Total		100	1		

Median - reminder

Median

(any) number such that at least half of the observations are less than or equal to it and at least half of the observations are greater than or equal to it

\square raw data:

$$
\text { Med }=\left\{\begin{array}{cc}
X_{\frac{n+1}{2}: n} & n \text { odd } \\
\frac{1}{2}\left(X_{\frac{n}{2}: n}+X_{\frac{n}{2}+1: n}\right) & n \text { even }
\end{array}\right.
$$

where $X_{i: n}$ is the i-th order statistic, i.e. the i-th smallest value of the sample

Median reminder - cont.

\square for grouped class interval data:

$$
M e d \cong c_{L}+\frac{b}{n_{M}}\left(\frac{n}{2}-\sum_{i=1}^{M-1} n_{i}\right)
$$

where:
M - number of the median's class
c_{L} - lower end of the median's class interval
b - length of the median's class interval

Mode

Mode

the value that appears most often
\square for grouped data:
Mo = most frequent value
\square for grouped class interval data:

$$
M o \cong c_{L}+\frac{n_{M O}-n_{M o-1}}{\left(n_{M o}-n_{M o-1}\right)+\left(n_{M o}-n_{M o+1}\right)} \cdot b
$$

where
$n_{\text {MO }}$ - number of elements in mode's class,
$\widetilde{c}_{L}, b=$ annalogous to the median

Mode - examples

Example 1:
 Example 1 -

$M o=3$

Example 3:

the mode's interval is $(50,60]$, with 33 elements

$$
n_{M o}=33, c_{L}=50, b=10, n_{M o-1}=23, n_{M o+1}=12
$$

$$
M o \cong 50+\frac{33-23}{(33-23)+(33-12)} \cdot 10 \approx 53.23
$$

Which measure should we choose?

\square Arithmetic mean: for typical data series (single max, monotonous frequencies)
\square Mode: for typical data series, grouped data (the lengths of the mode's class and neighboring classes should be equal)
\square Median: no restrictions. The most robust (in case of outlier observations, fluctuations etc.)

Quantiles, quartiles

$\square p$-th quantile (quantile of rank p): number such that the fraction of observations less than or equal to it is at least p, and values greater than or equal to it at least $1-p$
$\square Q_{1}$: first quartile = quantile of rank $1 / 4$
\square Second quartile $=$ median
= quantile of rank ½
$\square Q_{3}$: Third quartile = quantile of rank $3 / 4$

Quantiles - cont.

Empirical quantile of rank p :

$$
Q_{p}=\left\{\begin{array}{cc}
\frac{X_{n p: n}+X_{n p+1: n}}{2} & n p \in Z \\
X_{[n p]+1: n} & n p \notin Z
\end{array}\right.
$$

Quartiles - cont.

\square Quantiles for $p=1 / 4$ and $p=3 / 4$.
\square For grouped class interval data analogous to the median

$$
\begin{aligned}
& Q_{k} \cong c_{L}+\frac{b}{n_{M_{k}}}\left(\frac{k \cdot n}{4}-\sum_{i=1}^{M_{k-1}-1} n_{i}\right) \\
& \text { for } k=1 \text { or } 3
\end{aligned}
$$

where M_{1}, M_{3} - number of the quartile's class b - length of quartile class interval c_{L} - lower end of the quartile class interval

[^0]
Quartiles - examples

Example 1:

Example1 -

$$
248 \cdot 1 / 4=62 \quad 248 \cdot 3 / 4=186
$$

so

$$
Q_{1}=\frac{X_{62248}+X_{60248}}{2}=2, \quad Q_{3}=\frac{X_{186248}+X_{182288}}{2}=3.5
$$

Example 3:

$$
100 \cdot 1 / 4=25 \quad 100 \cdot 3 / 4=75
$$

$$
\begin{aligned}
& M_{1}=2, \quad \mathrm{M}_{3}=4 \quad \text { so } \\
& Q_{1} \cong 40+\frac{10}{23}(25-11) \approx 46,09 \quad Q_{3} \cong 60+\frac{10}{12}(75-67) \approx 66,67
\end{aligned}
$$

Variability measures

\square Classical measures

- variance, standard deviation
- average (absolute) deviation
- coefficient of variation
\square Measures based on order statistics
- range
- interquartile range
- quartile deviation
- coefficients of variation (based on order stats)
- median absolute deviation

Measures based on order statistics

\square Range

the most simple measure, does not take into account anything but the extreme values

$$
r=X_{n: n}-X_{1: n}
$$

\square Inter Quartile Range (midspread, middle fifty) more robust than the range

$$
I Q R=Q_{3}-Q_{1} \quad \begin{aligned}
& \text { length of the interval that covers the } \\
& \text { middle } 50 \% \text { observations }
\end{aligned}
$$

may be further used to calculate quartile deviation $Q=I Q R / 2$, and coefficients of variation $V_{Q}=Q / M e d$ or $V_{Q 1 Q 3}=I Q R /\left(Q_{3}+Q_{1}\right)$ (quartile variation coefficient) or the typical range: [Med $-Q, M e d+Q]$

Range, interquartile range - examples

Example 1:

$$
\begin{aligned}
& r=5-2=3, \\
& I Q R=3.5-2=1.5
\end{aligned}
$$

Example 3:

$$
\begin{aligned}
& r \cong 120-30=90 \\
& \quad \text { (in reality } 118,9-32,45=86,45 \text {) } \\
& I Q R \cong 66,67-46,09=20,58
\end{aligned}
$$

Classical measures of dispersion

Variance

\square raw data

$$
\hat{S}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-(\bar{X})^{2}
$$

\square grouped data

$$
\hat{S}^{2}=\frac{1}{n} \sum_{i=1}^{k} n_{i}\left(X_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{k} n_{i} X_{i}^{2}-(\bar{X})^{2}
$$

\square grouped class interval data

$$
\hat{S}^{2} \cong \frac{1}{n} \sum_{i=1}^{k} n_{i}\left(\bar{c}_{i}-\bar{X}\right)^{2}=\frac{1}{n} \sum_{i=1}^{k} n_{i} \bar{c}_{i}^{2}-(\bar{X})^{2}
$$

+ Sheppard's correction

$$
\bar{S}^{2} \cong \hat{S}^{2}-\frac{c^{2^{2}}}{}
$$

$c=$ length of class interval (for equal intervals)

$$
\text { ingeneral } \quad \bar{S}^{2} \cong \hat{S}^{2}-\frac{1}{12 n} \sum_{i=1}^{k} n_{i}\left(c_{i}-c_{i-1}\right)^{2}
$$

Variance - examples

Example 1:

$$
\begin{aligned}
& {\hat{\hat{S}^{2}}}^{\frac{1}{2 m}(2-3.0)^{2} \cdot 74+(3-3.4} \\
& \quad \approx 0.71 \\
& \text { Example 3: }
\end{aligned}
$$

$$
\frac{1}{248}\left((2-3.06)^{2} \cdot 74+(3-3.06)^{2} \cdot 76+(3.5-3.06)^{2} \cdot 48+(4-3.06)^{2} \cdot 31+(4.5-3.06)^{2} \cdot 9+(5-3.06)^{2} \cdot 10\right)
$$

$$
\begin{aligned}
\hat{S}^{2} \approx 1 / 100 \cdot & \left((35-58.7)^{2} \cdot 11+(45-58.7)^{2} \cdot 23+(55-58.7)^{2} \cdot 33+(65-58.7)^{2} \cdot 12\right. \\
& \left.+(75-58.7)^{2} \cdot 6+(85-58.7)^{2} \cdot 8+(95-58.7)^{2} \cdot 3+(105-58.7)^{2} \cdot 2+(115-58.7)^{2} \cdot 2\right)
\end{aligned}
$$

$$
=331.31
$$

$$
\bar{S}^{2}=331.31-10^{2} / 12 \approx 322.98
$$

in reality

$$
\hat{S}^{2}=333.85
$$

distrubution not normal or sample too small for Sheppard's correction larger errors from small sample size than from class grouping.

Standard deviation

In the same units as the initial variable

$$
\hat{S}=\sqrt{\hat{S}^{2}}, \quad \bar{S}=\sqrt{\bar{S}^{2}}
$$

Example 1:

$$
\hat{S} \approx 0.84 \text { [grade] }
$$

Example 3:

$$
\hat{S} \approx 18.2\left[\mathrm{~m}^{2}\right]
$$

Average (absolute) deviation, mean deviation

Nowadays seldom used. Simple calculations.
for raw data

$$
d=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|
$$

etc...
We have: $d<S$

Coefficient of variation (classical)

For comparisons of the same varaible accross populations or different variables for the same population

$$
\begin{aligned}
& V_{s}=\frac{\hat{S}}{\bar{X}}(\cdot 100 \%), \\
& \text { or } V_{d}=\frac{d}{\bar{X}}(\cdot 100 \%)
\end{aligned}
$$

Skewness (asymmetry)

left
symmetry
(zero)
right
(positive)

$\bar{X}=M e d=M o$

$\bar{X}<$ Med $<$ Mo

$\bar{X}>M e d>M o$
(typical order)

Measures of asymmetry

\square Skewness

$$
A=\frac{M_{3}}{\hat{S}^{3}}
$$

where M_{3} is the third central moment
\square Skewness coefficient

$$
A_{1}=\frac{\bar{X}-M o}{\hat{S}} \quad \text { or } \quad A_{1}=\frac{\bar{x}-M e d}{\hat{S}}
$$

\square Quartile skewness coefficient

$$
A_{2}=\frac{Q_{3}-2 M e d+Q_{1}}{Q_{3}-Q_{1}}
$$

Interpretation

\square positive values= positive asymmetry (right skewed distribution)
\square negative values $=$ negative asymmetry (left skewed distribution)
\square For the skewness coefficient (with the median) and the quartile skewness coefficient the strength of asymmetry (absolute value):

口 0-0.33: weak

- 0.34 - 0.66 : medium
- $0: 67-1$: strong

Asymmetry - examples

Example 1: $A \approx 0.28$

$A_{1}=\frac{3.06-3}{0.84} \approx 0.07$ (Med)
$A_{1}=\frac{3.06-3}{0.84} \approx 0.07$ (Mo)
$A_{2}=\frac{3.5-2 \cdot 3+2}{3.5-2}=-\frac{1}{3}$
Example 3:

$A \cong 1.15$,
$A_{1} \cong \frac{58.7-53.23}{18.2} \approx 0.3($ Mo $)$ or $A_{1}=\frac{58.7-54.85}{18.2} \approx 0.24(\mathrm{Med})$
$A_{2} \cong \frac{66.67-2 \cdot 54.85+46.09}{66.67-46.09} \approx 0.15$

Boxplot

Allows to compare two (or more) populations

$$
\begin{aligned}
& X_{*}=\min \left\{X_{i}: X_{i} \in\left[Q_{1}-3 / 2 / Q R, Q_{1}\right]\right\} \\
& X^{*}=\max \left\{X_{i}: X_{i} \in\left[Q_{3}, Q_{3}+3 / 2 / Q R\right]\right\}
\end{aligned}
$$

outliers:

$$
x<X_{*} \text { or } x>X^{*}
$$

Boxpolot - example of comparison

Low-wage earners in the EU

Examples (2)

Source: European Commission

Examples (3)
 Growth charts

Examples (4)
 Gross hourly earinings

Source: European Commission

Examples(5)
 Salary by occupational group and gender

Source: New Zealand State Services

2
Faculty of Economic Sciences

[^0]: Faculty of Economic Sciences

