Mathematical Statistics

Anna Janicka

Lecture I, 24.02.2022

DESCRIPTIVE STATISTICS, PART I

Technicalities

\square Contact: ajanicka@wne.uw.edu.pl
\square Office hours: ?
\square Course materials:
wne.uw.edu.pl/ajanicka
\square Mandatory readings: Lecture notes,
Wackerly, Mendenhall, Scheaffer (library and online)
\square Problem sets: web page
\square Moodle activities: moodle course

Rules

1. Presence during lectures expected. Those who skip the lecture must go through the material themselves.
2. The exam will cover material from the lecture and classes.
3. Presence during classes is mandatory (at most 2 absences)
4. Class grade: tests, class activity \& moodle activity.
5. Exam: for all those who passed classes.
6. Exam: 8 problems, 2 points each.

Exam grade $=($ number of exam points) $/ 3$
7. Final grade $=1 / 3^{*}$ class grade $+2 / 3^{*}$ exam grade, rounded.

What to expect

\square Course materials, problem sets, examples, old exams, etc. on the web page.
\square Links to everything on moodle

What we will do during the semester

\square Index numbers
\square Descriptive statistics
\square Statistical model, statistical inference, notion of a statistic
\square Estimation. Estimator properties
\square Verification of hypotheses, different kinds of tests
\square Bayesian statistics

Plan for today

1. Introduction

2. Descriptive statistics:

■ basic terms

- data presentation
- sample characteristics
measures
\square central tendency

What is the difference between Statistics and Mathematical Statistics?

Statistics: gathering and analyzing data on mass phenomena
historically: ancient times, various censuses, a description of the state
Mathematical Statistics: Statistics from a mathematical standpoint, i.e. a field of applied mathematics used to describe and analyze phenomena with mathematical tools, mainly probability theory
historically: with the beginning of probability calculus:
Pascal, Fermat, Gauss

Descriptive Statistics

Quantitative description of data.
Data = sample from a population, for which a variable (or variables) are studied Variable
measurable
categorical
continuous count quasi-continuous

Study

\square full - concerns the full population
\square representative - part of the population; the sample \neq population in the latter case, inference about the whole population requires assumptions and the use of probability calculus tools

Presentation of data

\square Aim: visibility
\square depends on the characteristics of the variable
\square tabular
\square graphical

Example 1 - count variable

Some class grades for a FoES course (248 individuals)

```
333.523.542222 32424243.543 3 3.53.53.5 3
3.5343322223.52233 3.54.53.54333 3.54 3.5
3.54423.53.5223.53.5333233.52333.524532
3 3 3 3 3 3 5 3 34.53 3.52 3 3.5 3.5 3.524.5 322 2 3 3
3.53.5524542433342323.523.5322 3.532 3.5
3.532 3.54 3.534.5223.53254233 3 3.53.5 3 2 3.5
44324.5232223335332425433.53.52233 3
3.522223.553.53334333544.543.54.53 3.5 3 3
33.52 3.543222324.54.54424233 3.532334
3.522253.54222222224322
```


Frequency tables

Single value

Value	Number	Frequency
x_{1}	n_{1}	$f_{1}=n_{1} / n$
x_{2}	n_{2}	$f_{2}=n_{2} / n$
x_{3}	n_{3}	$f_{3}=n_{3} / n$
\ldots	\ldots	\ldots
x_{k}	n_{k}	$f_{k}=n_{k} / n$
Total	n	1

Example 1 - cont.

Grade	Number	Frequency
2	74	29.84%
3	76	30.65%
3.5	48	19.35%
4	31	12.50%
4.5	9	3.63%
5	10	4.03%
Total	248	100%

Example 1 - cont. (2). Bar charts of numbers and frequencies

Example 2 - categorical variable

Father's educational attainment for a

 sample of 32 students| Father's education | Number | Frequency |
| :--- | :---: | :---: |
| vocational | 5 | 0.16 |
| secondary | 4 | 0.13 |
| secondary
 vocational | 6 | 0.19 |
| higher | 17 | 0.53 |
| Total | 32 | 1.00 |

Example 2 - cont. Pie chart

Father's education

- vocational
\square secondary

secndary
vocational
\square higher

Example 3 - continuous or quasi-continuous variable

Apartment surface area, $n=100$

32.45	33.21	34.36	35.78	37.79	38.54	38.91	38.96	39.50	39.67
39.80	41.45	41.55	42.27	42.40	42.45	44.25	44.50	44.70	44.83
44.90	45.10	45.90	46.52	47.65	48.10	48.55	48.90	49.00	49.24
49.55	49.65	49.70	49.90	50.90	51.40	51.50	51.65	51.70	51.80
51.98	52.00	52.10	52.30	53.65	53.89	53.90	54.00	54.10	55.20
55.30	55.56	55.62	56.00	56.70	56.80	56.90	56.95	57.13	57.45
57.70	57.90	58.00	58.50	58.67	58.80	59.23	63.40	63.70	64.20
64.30	64.60	65.00	66.29	66.78	67.80	68.90	69.00	69.50	73.20
76.80	77.10	77.80	78.90	79.50	82.70	83.40	84.50	84.90	85.00
86.00	89.10	89.60	93.00	96.70	98.78	103.00	107.90	112.70	118.90

Source: A. Boratyńska, Wykłady ze statystyki matematycznej

Grouped frequency table

Interval	Class mark	Number of. obs.	Frequency	Cumulative number $c n_{i}$	Cumulative frequency cf
$\left(c_{0}, c_{1}\right]$	\bar{c}_{1}	n_{1}	$f_{1}=n_{1} / n$	n_{1}	f_{1}
$\left(c_{1}, c_{2}\right]$	\bar{c}_{2}	n_{2}	$f_{2}=n_{2} / n$	$n_{1}+n_{2}$	$f_{1}+f_{2}$
$\left(c_{2}, c_{3}\right]$	\bar{C}_{3}	n_{3}	$f_{3}=n_{3} / n$	$n_{1}+n_{2}+n_{3}$	$f_{1}+f_{2}+f_{3}$
\ldots		\ldots	\ldots		
$\left(c_{k-1}, c_{k}\right]$	\bar{c}_{k}	n_{k}	$f_{k}=n_{k} / n$	$\sum n_{i}=n$	$\sum f_{i}=1$
Total		n	1		

Choice of classes (interval ranges, bins): usually equal length or similar frequency

Faculty of Economic Sciences

Example 3 - cont.

Interval	Class mark	Number	Frequency	Cumulative number cn	Cumulative frequency ct
$(30,40]$	35	11	0.11	11	0.11
$(40,50]$	45	23	0.23	34	0.34
$(50,60]$	55	33	0.33	67	0.67
$(60,70]$	65	12	0.12	79	0.79
$(70,80]$	75	6	0.06	85	0.85
$(80,90]$	85	8	0.08	93	0.93
$(90,100]$	95	3	0.03	96	0.96
$(100,110]$	105	2	0.02	98	0.98
$(110,120)$	115	2	0.02	100	1.00
Total		100	1	Mean-example $\frac{\text { Median - example }}{\text { Mode - example }}$ Quartile - example Variance - exame	

Example 3 - cont. (2)
 Number histogram, frequency histogram

Example 3 - cont. (3)
Frequency histogram and frequency polygon

Example 3 - cont. (4) Cumulative frequency histogram and cumulative frequency polygon

Example 1 - cont. (3) Empirical CDF

Sample characteristics

Describe different properties of measurable variables Measures of

- central tendency
- variability (dispersion, spread)
- asymmetry
- concentration

Types:
■ based on moments - classic

- based on measures of position

Central tendency

\square Classic:

- arithmetic mean
\square Position (order, rank):
- median
\square mode
- quartile

Arithmetic mean

\square raw data:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

\square grouped data:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{k} x_{i} \cdot n_{i}
$$

\square grouped class interval data:

$$
\bar{X} \cong \frac{1}{n} \sum_{i=1}^{k} \bar{c}_{i} \cdot n_{i}
$$

Arithmetic mean - examples

Example 1 :

$$
\bar{X}=\frac{2 \cdot 74+3 \cdot 76+3.5 \cdot 48+4 \cdot 31+4.5 \cdot 9+5 \cdot 10}{248} \approx 3.06
$$

Example 3:

$$
\begin{aligned}
& \bar{X} \cong \\
& \cong \frac{35 \cdot 11+45 \cdot 23+55 \cdot 33+65 \cdot 12+75 \cdot 6+85 \cdot 8+95 \cdot 3+105 \cdot 2+115 \cdot 2}{100} \\
& =58.7
\end{aligned}
$$

while in reality: $\bar{X}=59.58$

Median

Median

(any) number such that at least half of the observations are less than or equal to it and at least half of the observations are greater than or equal to it

\square raw data:

$$
\text { Med }=\left\{\begin{array}{cc}
X_{\frac{n+1}{2}: n} & n \text { odd } \\
\frac{1}{2}\left(X_{\frac{n}{2}: n}+X_{\frac{n}{2}+1: n}\right) & n \text { even }
\end{array}\right.
$$

where $X_{i: n}$ is the i-th order statistic, i.e. the i-th smallest value of the sample

Median - cont.

\square for grouped class interval data:

$$
M e d \cong c_{L}+\frac{b}{n_{M}}\left(\frac{n}{2}-\sum_{i=1}^{M-1} n_{i}\right)
$$

where:
M - number of the median's class
c_{L} - lower end of the median's class interval
b - length of the median's class interval

Median - examples

Example 1:
 Example 1-

Example 3:

Example 3 cont.

$$
M=3, \quad n_{3}=33, \quad c_{L}=50, \quad b=10
$$

$$
M e d \cong 50+\frac{10}{33}(50-34) \approx 54.85
$$

in reality: $\mathrm{Med}=55.25$

Mode

Mode

the value that appears most often
\square for grouped data:
Mo = most frequent value
\square for grouped class interval data:

$$
M o \cong c_{L}+\frac{n_{M O}-n_{M o-1}}{\left(n_{M o}-n_{M o-1}\right)+\left(n_{M o}-n_{M o+1}\right)} \cdot b
$$

where
$n_{M O}$ - number of elements in mode's class,
$\widetilde{c}_{L}, b=$ annalogous to the median

Mode - examples

Example 1:
 $M o=3$
 Example 3:
 Example 3 cont.

the mode's interval is $(50,60]$, with 33 elements

$$
n_{M o}=33, c_{L}=50, b=10, n_{M o-1}=23, n_{M o+1}=12
$$

$$
M o \cong 50+\frac{33-23}{(33-23)+(33-12)} \cdot 10 \approx 53.23
$$

Which measure should we choose?

\square Arithmetic mean: for typical data series (single max, monotonous frequencies)
\square Mode: for typical data series, grouped data (the lengths of the mode's class and neighboring classes should be equal)
\square Median: no restrictions. The most robust (in case of outlier observations, fluctuations etc.)

Quantiles, quartiles

$\square p$-th quantile (quantile of rank p): number such that the fraction of observations less than or equal to it is at least p, and values greater than or equal to it at least $1-p$
$\square Q_{1}$: first quartile = quantile of rank $1 / 4$
\square Second quartile $=$ median
= quantile of rank ½
$\square Q_{3}$: Third quartile = quantile of rank $3 / 4$

Quantiles - cont.

Empirical quantile of rank p :

$$
Q_{p}=\left\{\begin{array}{cc}
\frac{X_{n p: n}+X_{n p+1: n}}{2} & n p \in Z \\
X_{[n p]+1: n} & n p \notin Z
\end{array}\right.
$$

Quartiles - cont.

\square Quantiles for $p=1 / 4$ and $p=3 / 4$.
\square For grouped class interval data analogous to the median

$$
\begin{aligned}
& Q_{k} \cong c_{L}+\frac{b}{n_{M_{k}}}\left(\frac{k \cdot n}{4}-\sum_{i=1}^{M_{k}-1} n_{i}\right) \\
& \text { for } k=1 \text { or } 3
\end{aligned}
$$

where M_{1}, M_{3} - number of the quartile's class b - length of quartile class interval c_{L} - lower end of the quartile class interval

[^0]
Quartiles - examples

Example 1:

Example1 -

$$
248 \cdot 1 / 4=62 \quad 248 \cdot 3 / 4=186
$$

so
Example 3 cont.

$$
Q_{1}=\frac{X_{62: 248}+X_{63: 248}}{2}=2
$$

$$
Q_{3}=\frac{X_{186: 248}+X_{187: 248}}{2}=3.5
$$

Example 3:

$$
100 \cdot 1 / 4=25 \quad 100 \cdot 3 / 4=75
$$

$$
M_{1}=2, \quad M_{3}=4 \quad \text { so }
$$

$$
Q_{1} \cong 40+\frac{10}{23}(25-11) \approx 46.09 \quad Q_{3} \cong 60+\frac{10}{12}(75-67) \approx 66.67
$$

2
Faculty of Economic Sciences

[^0]: Faculty of Economic Sciences

