Probability Calculus

Anna Janicka

lecture XI, 12.1.2021

LINEAR REGRESSION CHEBYSHEV INEQUALITIES CONVERGENCE LAWS OF LARGE NUMBERS

Plan for Today

- 1. Conditional expectation as a predictor
- 2. Linear Regression
- 3. Chebyshev Inequalities
- 4. Types of convergence of Random Variables
 - convergence almost surely
 - convergence in probability
- 5. Laws of Large Numbers
 - Weak LLN

Conditional Expectation as an approximation

1. Theorem:

Let $X, Y : \Omega \to \mathbb{R}$ be random variables such that $\mathbb{E}Y^2 < \infty$. Then, the function $\varphi^* : \mathbb{R} \to \mathbb{R}$, such that $\varphi^*(x) = \mathbb{E}(Y|X = x)$, satisfies:

$\mathbb{E}(Y - \varphi^*(X))^2$

 $= \min\{\mathbb{E}(Y - \varphi(X))^2 : \varphi \text{ is a Borel function} : \mathbb{R} \to \mathbb{R}\}.$

Linear regression

 Best (in terms of average square deviation) linear approximation of variable Y with variable X, i.e. aX+b: minimizes

$$f(a,b) = \mathbb{E}(Y - aX - b)^2$$
 solution:

$$a = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var} X} \quad b = \mathbb{E} Y - \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var} X} \mathbb{E} X$$

Chebyshev Inequality

- Sometimes we are only interested in inequalities of the type
 - $\mathbb{P}(X \ge x) \le \alpha.$
- 2. Chebyshev inequality

Let X be a nonnegative integrable random variable, and let $\varepsilon > 0$. We have:

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}X}{\varepsilon}$$

Chebyshev Inequality – derivates

- **3.** Chebyshev inequality for $|X|^p$, $(X \mathbb{E}X)^2$ and $e^{\lambda X}$ Let X be a random variable.
- Markov Inequality: For any p > 0 such that $\mathbb{E}|X|^p$ exists, and any $\varepsilon > 0$, $\mathbb{P}(|X| \ge \varepsilon) \le \frac{\mathbb{E}|X|^p}{\varepsilon^p}$.
- Chebyshev-Bienaymé Inequality: For any $\varepsilon > 0$, if the random variable X^2 is integrable, $\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$.
- Exponential Chebyshev Inequality: Let us assume that Ee^{pX} < ∞ for a given value p > 0. Then, for any λ ∈ [0, p] and for any ε > 0, P(X ≥ ε) ≤ Ee^{λX}/e^{λε}.

Bernstein Inequality

4. Bernstein inequality:

Let S_n be a random variable from a binomial distribution with parameters n and p. Then, for any $\varepsilon > 0$, we have $\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| \ge \varepsilon\right) \le 2e^{-2\varepsilon^2 n}$.

also:
$$\mathbb{P}\left(\frac{S_n}{n} \ge p + \varepsilon\right) \le e^{-2\varepsilon^2 n}$$

$$\mathbb{P}\left(\frac{S_n}{n} \leqslant p - \varepsilon\right) \leqslant e^{-2\varepsilon^2 n}$$

5. Examples

Comparison of inequalities

3	n	Chebyshev- Bienaymé	Bernstein
0,1	100	0,25	0,2707
0,1	1000	0,025	4,1223E-09
0,05	100	1	1,2131
0,05	1000	0,1	0,0135
0,05	10000	0,01	3,8575E-22
0,01	100	25	1,9604
0,01	1000	2,5	1,6375
0,01	10000	0,25	0,2707
0,01	100000	0,025	4,1223E-09

1. Almost sure convergence A sequence $(X_n)_{n \ge 1}$ of random variables over Ω converges almost surely to X, if $\mathbb{P}(\lim_{n \to \infty} X_n = X) = 1$.

Equivalently, we may say that there exists a subset $\Omega' \subset \Omega$ such that $\mathbb{P}(\Omega') = 1$, such that for any $\omega \in \Omega'$, we have $\lim_{n\to\infty} X_n(\omega) = X(\omega)$.

Denoted by $X_n \xrightarrow{a.s.} X$.

An alternative formulation:

$$\lim_{n\to\infty} \mathbb{P}(\sup_{k\ge n} |X_k - X| > \varepsilon) = 0.$$

Types of convergence – cont.

2. Convergence in probability

A sequence $(X_n)_{n \ge 1}$ of random variables over Ω converges in probability to X, if for any $\varepsilon > 0$, we have that $\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0.$

Equivalently, for any
$$\varepsilon > 0$$
,
 $\lim_{n \to \infty} \mathbb{P}(|X_n - X| \le \varepsilon) = 1.$

Denoted by $X_n \xrightarrow{\mathbb{P}} X$ or $\operatorname{plim}_{n \to \infty} X_n = X$.

3. Almost sure convergence \Rightarrow convergence in probability

Properties of limits of RV

4. Theorem

Let $(X_n)_{n \ge 1}$ and $(Y_n)_{n \ge 1}$ be sequences of random variables. If $(X_n)_{n \ge 1}$ converges to X and $(Y_n)_{n \ge 1}$ converges to Y almost surely (/in probability)), then $X_n \pm Y_n \to X \pm Y$ and $X_n \cdot Y_n \to XY$ almost surely (/in probability).

Weak Laws of Large Numbers

1. Weak Law of Large Numbers for the Bernoulli Scheme

Let X_1, X_2, \ldots be independent with distributions $\mathbb{P}(X_n = 1) = p = 1 - \mathbb{P}(X_n = 0)$. We then have that (S_n/n) converges in probability to p; in other words, for any $\varepsilon > 0$, we have $\lim_{n\to\infty} \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) = 0$.

 $S_n = X_1 + X_2 + \ldots + X_n$

Weak Laws of Large Numbers – cont.

2. Weak Law of Large Numbers for uncorrelated random variables

Let X_1, X_2, \ldots be uncorrelated random variables with a common upper bound to their variances. Then, the sequence $(X_n)_{n \ge 1}$ satisfies the weak law of large numbers: $\frac{S_n - \mathbb{E}S_n}{n} \xrightarrow{\mathbb{P}} 0$, i.e. for any $\varepsilon > 0$ we have $\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n - \mathbb{E}S_n}{n} \right| > \varepsilon \right) = 0.$

Weak Laws of Large Numbers – cont. (2)

Examples

- independent events
- variances without bounds \rightarrow NO
- correlated $RV \rightarrow NO$
- embarrassing question

Strong Laws of Large Numbers

1. Strong Law of Large Numbers for the Bernoulli Scheme

Let X_1, X_2, \ldots be a sequence of independent random variables, such that $\mathbb{P}(X_n = 1) = p = 1 - \mathbb{P}(X_n = 0), \quad n = 1, 2, \ldots$ Then, the sequence (S_n/n) converges almost surely to p; i.e., there exists an event Ω' of measure 1 such that for any $\omega \in \Omega'$, we have $\lim_{n \to \infty} \frac{S_n(\omega)}{n} = p.$

Strong Laws of Large Numbers – cont.

2. Kolmogorov's Strong Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent, identically distributed integrable random variables. Then, $\frac{S_n}{n} \xrightarrow[n \to \infty]{a.s.} \mathbb{E}X_1.$

flaw: we do not know the rate of convergence uses: many, e.g. verification of the probabilistic model, MC methods

