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1. Applications of Strong Laws of Large Numbers in Statistics

In most real-life applications, the researcher does not know the exact distribution of a
random variable; rather, his aim is precisely to find the basic characteristics of a variable based
on observations only. We have already hinted above that the SLLN is a tool which allows to
assess the validity of considering empirical sample means when aiming at a description of an
unknown distribution: if X1, X2, . . . is a sequence of independent integrable random variables
of identical distributions, we have that

X =
X1 +X2 + . . .+Xn

n
a.s.−−−→
n→∞

EX1.

This observation may be extended further; if X1, X2, . . . is a sequence of independent ran-
dom variables of identical distributions, whose squares are integrable, we have that (also on
the basis of the SLLN, applied to the sequence of squares):

S2 =
1
n

n∑
k=1

(Xk −X)2 a.s.−−−→
n→∞

VarX1.

In other words, the sample variance (defined as above) is a good approximation of the true
distribution variance.

The SLLN allow to say even more. Assume that the sequence X1, X2, . . . , Xn of independent
identically distributed random variables represents a sample from a distribution (perhaps
unknown) of size n. We may define an empirical distribution for this sample:

µn(A) =
1A(X1) + 1A(X2) + . . .+ 1A(Xn)

n
.

From the SLLN, we have that for any event A ⊆ Ω:

µn(A) a.s.−−−→
n→∞

E1A(X1) = P(X1 ∈ A),

which means that the true distribution of the variables Xn is a limit of the empirical distribu-
tions. In many cases, however, it is not convenient to speak in terms of distributions (which
are formulated in terms of probabilities of different events); it is more convenient to talk
about cumulative distribution functions (which also identify a distribution unequivocally). A
cumulative distribution function for the empirical distribution associated with a sample of
size n (which is also called the empirical CDF of the sample) may be defined as

Fn(t) =
1{X1¬t} + 1{X2¬t} + . . .+ 1{Xn¬t}

n
.

From the SLLN, we have that for any t ∈ R

Fn(t)
a.s.−−−→
n→∞

F (t).

However, an even stronger result may be proven: uniform convergence. This result is referred
to as the Glivenko–Cantelli Theorem, which is of primary importance in statistics:

Theorem 1. Let X1, X2, . . . be independent random variables from a distribution with a CDF
F . Then,

sup
t∈R
|Fn(t)− F (t)| a.s.−−−→

n→∞
0.
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2. Limit Theorems

We have stated above that the SLLN do not say much about the rate of convergence of
sequences of averages. An extremely important answer to this question is the Central Limit
Theorem (CLT). The classical version of the CLT describes the size and the distributional
form of the fluctuations around the theoretical mean during this convergence:

Theorem 2. Let X1, X2, . . . be identically distributed independent random variables, such
that EX21 <∞. If by m = EX1 we denote the mean, and by σ2 = VarX1 the variance of this
distribution, then for any t ∈ R, we have that

P
(
X1 +X2 + . . .+Xn − nm

σ
√
n

¬ t

)
n→∞−−−→ Φ(t),

where

Φ(t) =
∫ t
−∞

1√
2π

exp(−x2/2)dx

is the CDF of the standard normal distribution.

The theorem may easily be extended to versions with lower limits for the standardized
sums: for any s, t ∈ R such that s < t we have

P
(
s ¬ X1 +X2 + . . .+Xn − nm

σ
√
n

)
n→∞−−−→ 1− Φ(s),

and

P
(
s ¬ X1 +X2 + . . .+Xn − nm

σ
√
n

¬ t

)
n→∞−−−→ Φ(t)− Φ(s).

Note that any of the inequalities above may be changed to strict without any change in the
limits on the right hand side. What should also be noted is that although we have formulated
the CLT for identically distributed random variables, this is not a necessary condition; the
CLT also holds for sequences of non-identical random variables, provided that they comply
with certain conditions (for example the Lyapunov condition).

Note that the CLT provides an answer to the question of the prevalence of the normal
probability distribution in the real-world (for example the appearance of the “Bell Curve”
in density estimates): many quantities and characteristics may be thought of as a (balanced)
sum of a large number of random factors.

A specific case of the CLT is the De Moivre - Laplace Theorem, which deals with the
case of a Bernoulli Scheme:

Theorem 3. Let X1, X2, . . . be a sequence of independent identically distributed random va-
riables, such that

P(Xn = 1) = p = 1− P(Xn = 0).

Then, we have that for any s < t,

P

s ¬ X1 +X2 + . . .+Xn − np√
np(1− p)

¬ t

 n→∞−−−→ Φ(t)− Φ(s).

As before, any of the inequalities above may be changed to strict without consequences for
the formula on the right-hand side.

We will now formulate some examples to show the usefulness of the CLT.

(1) In many problems, we assume that the probability that a newborn /an individual will
be male or female is equal to 12 . Under such assumptions, if we were to answer the
question of what is the probability that out of 10000 newborns, the number of girls
will exceed the number of boys – the answer would be 12 (approximately). However,
say that in reality the probability that a newborn will be a boy is equal to 0.517.
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What is the answer to the question now? Let Xi = 1i-th newborn is a boy. We have that
EXi = 0.517 and VarXi = 0.517 · 0.483; therefore,

P(X1 +X2 + . . .+X10000 < 5000) = P(X1 +X2 + . . .+X10000 − 10000 · 0.517 < 5000− 5170)

= P
(
X1 +X2 + . . .+X10000 − 5170√

10000 · 0.517 · 0.483
<

−170√
10000 · 0.517 · 0.483

)
≈ Φ

(
−170√

10000 · 0.517 · 0.483

)
.

Due to the fact that the standard normal distribution is symmetric around 0, we can
transform the above using the property Φ(t) + Φ(−t) = 1 to

= 1− Φ
(

170√
10000 · 0.517 · 0.483

)
≈ 1− Φ(3.40) ≈ 0.0004.

This means that for large n, contrary to the small sample situation, using an appro-
ximation of p = 1

2 instead of p = 0.517 may lead to major errors.
(2) Previous experience suggests that approximately 70% of students who pass matricu-

lation finally enroll at a given faculty. A faculty has the right to determine the exam
threshold. How many students should be initially accepted, if the faculty wants to
approximate that with probability of at least 0.9, the number who eventually enroll
does not exceed 200?

Assume that initially N individuals pass matriculation. Let Xi = 1i-th student will enroll,
for i = 1, 2, . . . , N . Let us assume that Xi are independent. Their distribution is given
by:

P(Xi = 1) = 0.7 = 1− P(Xi = 0).

Thus, we have that m = EX1 = 0.7, σ =
√

VarX1 =
√

0.7 · 0.3 ≈ 0.46. We are
interested in the event

{X1 +X2 + . . .+XN ¬ 200},
which may be transformed to{

X1 +X2 + . . .+XN − 0.7N
σ
√
N

¬ 200− 0.7N
0.46
√
N

}
.

Using the de Moivre-Laplace theorem, we approximate the probability of the above
event by

Φ
(

200− 0.7N
0.46
√
N

)
.

For which N will the above probability be equal to at least 0.9? We may search in
the standard normal cumulative distribution tables to find that Φ(1.29) ≈ 0.90147,
therefore it will suffice to take N such that 200−0.7N

0.46
√
N

is as close as possible to 1.29 (or
smaller). The solution is N ¬ 271.74, so we should have N ¬ 271. A similar reasoning
will allow us to find the minimum number of students who must pass matriculation
in order for the number of enrolled not to fall under a given threshold (with a given
probability).

(3) Let us assume that we take a sum of 400 numbers, each of them rounded up to
10−2. Assume that the rounding errors are independent random variables with uniform
distribution over [−10−2, 10−2]. What is the probability that the total error exceeds
0.1?

Let Xi be the error of rounding the i-th number. We have m = EX1 = 0, σ =√
4·10−4
12 ≈ 0.006, so

P(X1 +X2 + . . .+X400 > 0.1) = P
(
X1 +X2 + . . .+X400 − 400 · 0

0.006
√

400
>

0.1
0.12

)

≈ 1− Φ(
0.1
0.12

) ≈ 0.202,

based on the CLT.
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(4) Confidence Intervals. Another important example of the application of the CLT is
the construction of confidence intervals. Let us assume that X1, X2, . . . , Xn is a sample
from a known class of distributions, but with an unknown parameter θ – for example,
we toss a coin multiple times, but we do not know if the coin is unbiased or not. We
know that the average number of heads obtained approximates the true probability of
obtaining a head. But this average, for finite samples, is almost surely not the precise
result (and would change if we added another trial). Therefore, we should not pay too
much attention to the exact result. It would be better to describe the true probability
by means of an interval, rather than a point approximation. We will say that the
interval (θ1, θ2) is a confidence interval at a confidence level 1 − α for the parameter
θ, if

P(θ ∈ (θ1, θ2)) ­ 1− α.
θ1 and θ2 are random variables (functions of X1, X2, . . . , Xn). Obviously, our aim is to
assure that this interval is the narrowest possible.

Let us now return to the tossing coin experiment. Let X1, X2, . . . , Xn be a random
sample from a two-point distribution, such that

P(Xi = 1) = p = 1− P(Xi = 0)

(p is unknown). Based on this sample, we wish to find the confidence interval for p at
a confidence level 0.9, i.e. an interval (p1, p2) such that

P(p1 < p < p2) ­ 0.9.

We already know that a good candidate for the approximate of the distribution mean
(in our case – the value of p) is the sample average X. If we know that a standardized
average will behave similarly to the standard normal distribution, which is symmetric
around the mean and whose density has one maximum at the mean, we may infer that
the narrowest possible interval will be obtained by taking

p1 = X − ε and p2 = X + ε,

for a value ε > 0 which we should determine. In other words, we are searching for ε
such that

P(−ε < X − p < ε) ­ 0.9.
Transforming the formula to obtain the form from the CLT, we multiply by

√
n and

divide by
√
p(1− p) to obtain

P

− ε
√
n√

p(1− p)
<
X1 +X2 + . . .+Xn − np√

np(1− p)
<

ε
√
n√

p(1− p)

 ­ 0.9.

From the CLT, we have that the above is approximately equal to

Φ

 ε
√
n√

p(1− p)

− Φ

− ε
√
n√

p(1− p)

 = 2Φ(
ε
√
n√

p(1− p)
)− 1.

We have that Φ(1.64) ≈ 0.95 (so that 2Φ(1.64) − 1 ≈ 0.9); therefore, we will need
ε = 1.64p(1−p)√

n
(or larger, if we want the probability to exceed 0.9). Since we do not

know anything about the true value of p, we must assume the least favorable case;
this is p(1− p) = 1

2 ·
1
2 = 1

4 . Thus, we should take ε = 1.64
4
√
n

– this value will provide the
narrowest possible confidence interval for a confidence level of 0.9. For example, for a
sample of size 900, we would obtain the following 90% confidence interval for p:

(X − 0.014, X + 0.014).
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