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Lecture 11

1. Conditional Expectation as a Predictor

We have already signalled the importance of being able to predict one random variable with
the use of another random variable in practical applications. Here we will explore the topic a
little bit further, dropping the assumption of linear approximations we made until now.

Let us assume that a phenomenon may be described with the use of a two-dimensional
random vector, (X, Y ), but that one of the variables – Y – is hard to observe, or may be
observed, but later on (in the future). Let us now assume that we wish to assess the value of
Y , based on the observed values of X. As in the case of linear regression, we will be looking
for the best possible approximation in terms of the mean square error; this time, however,
we will not constrain the possible formulae to linear, but allow any Borel transformation of
variable X.

Formally, we wish to find a Borel function ϕ : R→ R, such that ϕ minimizes

E(Y − ϕ(X))2.

It may be shown that in this case, the best possible approximation is the conditional expec-
tation: ϕ∗(x) = E(Y |X = x); formally, we have:

Theorem 1. Let X, Y : Ω→ R be random variables such that EY 2 <∞. Then, the function
ϕ∗ : R→ R, such that ϕ∗(x) = E(Y |X = x), satisfies:

E(Y − ϕ∗(X))2 = min{E(Y − ϕ(X))2 : ϕ is a Borel function : R→ R}.

2. Chebyshev Inequalities

In this section, we will explore a simple and easy to prove inequality, which has very
sound theoretical implications. This inequality (and its derivatives) is extremely useful in
that it allows to assess the probability of events of given types without having to refer to any
knowledge about a given distribution, apart from basic information about the mean (variance,
or other moments, depending on the version). The questions that may be answered with the
use of this inequality revolve around obtaining an upper bound for the probability that a
random variable exceeds a given value, or that the discrepancy between the random variable
and its mean exceeds a given value. Such questions may easily arise in practical situations;
for example, a gambler may be interested in a rule of thumb to determine if participating in a
game is worthwhile or not (is the probability of loosing at least a given amount not too big?);
a researcher may be interested in the probability that the error of measurements exceeds a
given threshold, etc.

The basic version of the above-mentioned inequality, known as the Chebyshev inequality
(sometimes referred to as the Markov inequality), may be formulated in the following way:

Theorem 2. Let X be a nonnegative integrable random variable, and let ε > 0. We have:

P(X ­ ε) ¬ EX
ε
.

The proof of this theorem is simple. We have

X ­ X1{X­ε} ­ ε1{X­ε},

so that
EX ­ E(ε1{X­ε}) = εP(X ­ ε),

which upon transformation gives the requested property.
Note that not in all cases the inequality gives meaningful assessments – the upper bound

may be greater than 1 (or close to 1). However, as we have stated above, this simple inequality
has very many important implications. A lot of them may be easily justified with one of the
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numerous transformations of the basic Chebyshev inequality. Note that since the inequality
holds for any nonnegative random variable, we may substitute in place of X specific functions
or transformations of a variable X (not necessarily nonnegative, given that the transformation
is nonnegative); we may then obtain, for example, the following versions of the Chebyshev
inequality:

Theorem 3. Let X be a random variable.

• Markov Inequality: For any p > 0 such that E|X|p exists, and any ε > 0,

P(|X| ­ ε) ¬ E|X|p

εp
.

• Chebyshev-Bienaymé Inequality: For any ε > 0, if the random variable X2 is
integrable,

P(|X − EX| ­ ε) ¬ Var(X)
ε2

.

• Exponential Chebyshev Inequality: Let us assume that EepX < ∞ for a given
value p > 0. Then, for any λ ∈ [0, p] and for any ε > 0,

P(X ­ ε) ¬ EeλX

eλε
.

These three inequalities may immediately be obtained from the basic Chebyshev inequality
upon applying it to |X|p, (X − EX)2 and eλX in place of X, and εp, ε2 and eλε in place of ε,
respectively.

Examples:

(1) Let us assume we wish to measure an unknown value µ (a physical value, for example),
but that each measurement is laden with a random error. The natural model for this
experiment is assuming that the subsequent measurements are independent random
variables with mean µ, and variance not exceeding a constant c. From the Chebyshev-
Bienaymé Inequality, we have that

P(|Xi − µ| ­ ε) ¬ c

ε2
.

Note that if c is large (or ε relatively small), the information conveyed by the
inequality may be useless. On the other hand, if we wish to approximate the unknown
parameter µ with the mean of the measurements, the inequality proves very useful:

P
(∣∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣∣ ­ ε

)
¬

Var
(
1
n

∑n
i=1Xi

)
ε2

=
∑n
i=1Var(Xi)
n2ε2

¬ nc

n2ε2
=

c

nε2
.

In this case, the limit of the upper bound as n increases to infinity is zero, which
means that the approximation of µ, for a large number of repetitions of an experi-
ment, becomes very good; moreover, the inequality allows to determine the number of
repetitions necessary to obtain a required precision level with the required probability.

(2) Assume now that we wish to determine the unknown probability p of a single event
(for example, the probability of success in a Bernoulli trial). Similarly to the example
above, to determine this probability it will suffice to repeat (independently) a series
of trials and calculate the empirical frequency. Formally, let Xi be a random variable
equal to 1 if the required event occurred in the i-th trial, and 0 otherwise. We have
that EXi = p, and VarXi = p(1− p). Let us now denote the sum X1 +X2 + . . .+Xn

by Sn; we have ESn = np and VarSn = np(1 − p). From the Chebyshev-Bienaymé
Inequality, we have that

P
(∣∣∣∣Snn − p

∣∣∣∣ ­ ε
)
¬ p(1− p)

nε2
.
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This form of the upper bound is not too good in that it uses the unknown value of p.
However, knowing that p(1− p) ¬ 14 , we obtain the following assessment:

P
(∣∣∣∣Snn − p

∣∣∣∣ ­ ε
)
¬ 1

4nε2
.

Therefore, if we wish to obtain an approximation of p on the basis of, say, the empirical
frequency in 10000 repetitions of the experiment, the probability that the error we will
make will exceed 1

10 is not greater than 1
400 . In fact, it is much lower, which may be

demonstrated with other tools, such as the Exponential Chebyshev Inequality, and its
consequence: the Bernstein Inequality, which we will formulate later on.

(3) Another class of applications of the Chebyshev inequality comprise of situations where
the parameters of distributions of random variables are known – but the probability
of a given event of interest is, for one reason or other, difficult to calculate, and for
our needs it suffices to find an assessment of this probability instead of a precise value.
For example, let us assume that we toss a symmetric coin 20000 times, and we are
interested in the probability that the number of heads obtained will deviate from the
expected value of 10000 by more than 200, i.e. in P (|S20000 − 10000| ­ 200) . We have:

P (|S20000 − 10000| ­ 200) = P
(∣∣∣∣S2000010000

− 1
2

∣∣∣∣ ­ 1
100

)
¬ 1

4 · 20000 · (0.01)2
=

1
8
.

Again, this assessment may be improved considerably with other tools (other versions
of the Chebyshev Inequality among them).

We will now formulate a more powerful inequality, which also may be derived (albeit in
a slightly more complicated way) from the Chebyshev inequalities in the case of a Bernoulli
scheme: the Bernstein Inequality.

Theorem 4. Let Sn be a random variable from a binomial distribution with parameters n
and p. Then, for any ε > 0, we have

P
(∣∣∣∣Snn − p

∣∣∣∣ ­ ε
)
¬ 2e−2ε

2n.

If we wish to look at one-sided errors only, we have that

P
(
Sn
n
­ p+ ε

)
¬ e−2ε

2n

and
P
(
Sn
n
¬ p− ε

)
¬ e−2ε

2n.

We can now compare the assessments formulated on the base of the Chebyshev inequalities
(described in the examples above) with those obtained with the Bernstein inequality:

(2) For large n, the upper bound of 1
4nε2 from the Chebyshev Inequality is much larger

than 2e−2ε
2n.

(3) In the case of repetitive coin tossing, we have that

P (|S20000 − 10000| ­ 200) = P
(∣∣∣∣S2000010000

− 1
2

∣∣∣∣ ­ 1
100

)
¬ 2e−2·(0.01)

2·20000 ≈ 0.037,

which is significantly lower than the 0.125 obtained above.

3. Convergence of Sequences of Random Variables

Due to the fact that random variables are functions rather than points, and that when
dealing with random variables we always face the problem that instead of making a definite
statement we can only say that something happens with some probability, the question of
what happens with random variables when we look at infinite sequences and their limits is
a complicated one. Different types of convergence of sequences of random variables may be
defined. During this course, we will define only two of them: almost sure convergence and
convergence in probability.
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Definition 1. A sequence (Xn)n­1 of random variables over Ω converges almost surely to
X, if

P( lim
n→∞

Xn = X) = 1.

Equivalently, we may say that there exists a subset Ω′ ⊂ Ω such that P(Ω′) = 1, such that for
any ω ∈ Ω′, we have

lim
n→∞

Xn(ω) = X(ω).

Almost sure convergence is usually denoted by Xn
a.s.−−→ X.

An alternative formulation of the condition of almost sure convergence is the following:

lim
n→∞

P(sup
k­n
|Xk −X| > ε) = 0.

Definition 2. A sequence (Xn)n­1 of random variables over Ω converges in probability to
X, if for any ε > 0, we have that

lim
n→∞

P(|Xn −X| > ε) = 0.

Equivalently, for any ε > 0,
lim
n→∞

P(|Xn −X| ¬ ε) = 1.

Convergence in probability is usually denoted by Xn
P−→ X or plimn→∞Xn = X.

Note that when the condition of almost sure convergence is defined in the alternative for-
mulation, it becomes obvious that almost sure convergence of a sequence implies convergence
in probability. The reverse does not hold, i.e. there exist sequences fulfilling the condition
of convergence in probability, but such that the limit may be approached with “peaks” of
discrepancies from the limit every now and then, which excludes almost sure convergence.

Note also that the limit of a sequence of random variables is a random variable; however,
in many applications (for example, in the case of the sequences satisfying the assumptions of
the Laws of Large Numbers, which we will discuss next), the limit random variable may be
“degenerated” into a single point, i.e. a random variable which takes on a single value with
probability 1.

The two types of convergence defined above have many of the properties of pointwise
convergence, for example:

Theorem 5. Let (Xn)n­1 and (Yn)n­1 be sequences of random variables. If (Xn)n­1 converges
to X and (Yn)n­1 converges to Y almost surely (/in probability), then Xn± Yn → X ± Y and
Xn · Yn → XY almost surely (/in probability).

In the “standard” cases (when Yn does not converge to a variable which takes on the value
of 0 with non-negative probability), the limit of the ratio Xn/Yn also converges to X/Y .

4. Weak Laws of Large Numbers

One of the more important applications of the Chebyshev inequalities are the Laws of Large
Numbers. Under this term, we have several theorems describing the behavior of the series of
sums of random variables, i.e. of the sequences

Sn = X1 +X2 + . . .+Xn,

or rather the sequences of means:
Sn
n

=
X1 +X2 + . . .+Xn

n
,

for different types of sequences (Xn)n­1. Depending on whether the thesis of the theorem
pertains to convergence in probability or almost surely, the laws are denoted either as Weak
or Strong, respectively.

In one of the examples in the section above, when applying the Chebyshev Inequality to a
Bernoulli scheme, we have already proven what may be denoted as the Weak Law of Large
Numbers for the Bernoulli Scheme:
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Theorem 6. Let X1, X2, . . . be independent with distributions

P(Xn = 1) = p = 1− P(Xn = 0).

We then have that (Sn/n) converges in probability to p (i.e. a constant random variable equal
to p); in other words, for any ε > 0, we have

lim
n→∞

P
(∣∣∣∣Snn − p

∣∣∣∣ > ε
)

= 0.

In fact, the reasoning may easily be extended to weaken the assumptions of the theorem,
to obtain the Weak Law of Large Numbers (WLLN) for uncorrelated random variables
(not necessarily with common distributions!):

Theorem 7. Let X1, X2, . . . be uncorrelated random variables with a common upper bound to
their variances. Then, the sequence (Xn)n­1 satisfies the weak law of large numbers:

Sn − ESn
n

P−→ 0,

i.e. for any ε > 0 we have

lim
n→∞

P
(∣∣∣∣∣Sn − ESn

n

∣∣∣∣∣ > ε

)
= 0.

Examples:
(1) We repeat tossing a symmetric coin. Let Xn be random variable equal to 1 if the

result of the n-th toss is heads and 0 otherwise, for n = 1, 2, . . .. Then, the sequence
X1+...+Xn

n
converges in probability to 12 . This means that in an infinite sequence of coin

tosses, we expect to see heads in half of the cases (and the chance that in the limit the
proportion of heads will differ from 1

2 by more than ε, for any ε > 0, is equal to zero).

5. Strong Laws of Large Numbers

Now we will formulate two versions of the Strong Law of Large Numbers (SLLN), i.e. the
counterparts to the WLLN which deal with convergence almost surely.

The first theorem describes the case of the Bernoulli Scheme (Strong Law of Large
Numbers for the Bernoulli Scheme):

Theorem 8. Let X1, X2, . . . be a sequence of independent random variables, such that

P(Xn = 1) = p = 1− P(Xn = 0), n = 1, 2, . . . .

Then, the sequence (Sn/n) converges almost surely to p; in other words, there exists an event
Ω′ of measure 1 such that for any ω ∈ Ω′, we have

lim
n→∞

Sn(ω)
n

= p.

A very important implication of the above theorem is that the intuitive definition of pro-
bability as a limit of empirical frequencies does indeed lead to the correct understanding of
probability.

The second theorem is more general, and deals with independent random variables of iden-
tical distributions (Kolmogorov’s Strong Law of Large Numbers):

Theorem 9. Let X1, X2, . . . be a sequence of independent, identically distributed integrable
random variables. Then,

Sn
n

a.s.−−−→
n→∞

EX1.

This version of the theorem underlines the fact that empirical averages are a good ap-
proximation of the true mean of a distribution. We do not know, however, how good this
approximation is for a given value of n – from the theorem itself we do not know anything
about the rate of convergence of the sequences.

5


