Probability Calculus 2021/2022
 Problem set 11

1. We roll a die twice. Let X and Y denote the numbers obtained in the first and second roll, respectively. Calculate $\mathbb{E}(Y \mid X), \mathbb{E}(X+Y \mid X)$ and $\mathbb{E}(X \mid X+Y)$.
2. From the set $\{1,2, \ldots, 10\}$ we randomly draw, without replacement, two numbers. Let X be the smaller and Y the larger of the two values. Calculate $\mathbb{E}(X \mid Y)$ and $\mathbb{E}(X Y+X \mid X)$.
3. The monthly energy usage in a plant has a uniform distribution over [200, 250]. For a given usage level λ, the amount of CO_{2} emissions has an exponential distribution with parameter $5-\lambda / 100$. Find the (unconditional) density of the level of emissions.
4. Let (X, Y) be a random vector with a uniform distribution over a triangle with vertices $(0,0)$, $(1,0)$ and $(0,1)$. Calculate $\mathbb{E}(Y \mid X), \mathbb{E}\left(X Y^{2}+3 X^{2} Y-1 \mid X\right)$ and $\mathbb{P}\left(\left.Y \leqslant \frac{1}{2} \right\rvert\, X\right)$.
5. We roll a die once, and then again as many times as there were points during the first roll. Let X denote the total sum of points obtained during the experiment (including the first roll). Find $\mathbb{E} X$.

Some additional simple problems you should be able to solve on your own:

Theory (you should know going into this class)

1. What is the definition of a conditional expectation for a discrete random variable?
2. What is a conditional density function? What is the definition of a conditional expectation for a continuous random variable?

Problems (you should know how to solve after this class)
3. Knowing that $\mathbb{P}(Y=1 \mid X=5)=1 / 3$ and $\mathbb{P}(Y=5 \mid X=5)=2 / 3$, find $\mathbb{E}(Y \mid X=5)$ and $\mathbb{E}\left(X Y^{2} \mid X=5\right)$.
4. There are two white balls, with numbers 1 and 2 , and three black balls, with numbers 1,2 and 3 , in a box. Two balls were drawn from the box without replacement. Let X denote the maximum number obtained, and Y denote the number of white balls drawn. Find $\mathbb{E}(Y \mid X)$ and $\mathbb{E}(X \mid Y)$.
5. A coin was tossed three times. Let X denote the number of heads and

$$
Y= \begin{cases}1 & \text { if the last toss was heads } \\ 0 & \text { otherwise }\end{cases}
$$

Find $\mathbb{E}(X \mid Y)$ and $\mathbb{E}(X Y \mid X)$.
6. Let (X, Y) be a random vector from a uniform distribution over a triangle with vertices $(2,0)$, $(0,1)$ and $(-1,0)$. Calculate $\mathbb{E}(X \mid Y)$ and $\mathbb{E}\left(X^{2}+X Y \mid Y\right)$.
7. Let (X, Y) be a random vector with density

$$
g(x, y)=(x+y) 1_{\{0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}} .
$$

Find $\mathbb{E}(X \mid Y)$ and $\mathbb{E}(\sin X+Y \mid Y)$.

