Probability Calculus

Anna Janicka

lecture X, 16.12.2021

CONDITIONAL EXPECTATION LINEAR REGRESSION

Plan for Today

- 1. Conditional expectation
- 2. Linear regression

Conditional Expectations

1. Intuition

2. Definition in the discrete case:

Let (X, Y) be a discrete random vector such that $\mathbb{E}Y$ exists. For any $x \in \mathbb{R}$ such that $\mathbb{P}(X = x) > 0$, we define the **conditional expected value of variable** Y **given** X = x as the expected value of a random variable with distribution $\mu(A) = \mathbb{P}(Y \in A | X = x)$. That is, if $S_x = \{y \in \mathbb{R} : \mathbb{P}(X = x, Y = y) > 0\}$, we have $\mathbb{E}(Y | X = x) = \sum_{y \in S_x} y \mathbb{P}(Y = y | X = x)$.

Conditional Expected Value of discrete RV

- 3. Example:
 - double 0-1
 - function of X
- 4. Transformations

Let (X, Y) be a discrete random vector, and $\varphi : \mathbb{R} \to \mathbb{R}$ a Borel function such that $\mathbb{E}|\varphi(Y)| < \infty$. We then have that for any x such that $\mathbb{P}(X = x) > 0$: $\mathbb{E}(\varphi(Y)|X = x) = \sum_{y \in S_x} \varphi(y)\mathbb{P}(Y = y|X = x),$ where $S_x = \{y \in \mathbb{R} : \mathbb{P}(X = x, Y = y) > 0\}.$

Conditional density

5. Definition

Let (X, Y) be a continuous random vector with density $g: \mathbb{R}^2 \to [0, \infty)$. Let $g_X(x) = \int_{-\infty}^{\infty} g(x, y) dy > 0$ be the marginal density of X. For all $x \in \mathbb{R}$, we define **conditional density** of variable Y given X = x as the function $g_{Y|X}(y|x) = \begin{cases} \frac{g(x,y)}{g_X(x)} & \text{if } g_X(x) > 0\\ f(y) & \text{otherwise,} \end{cases}$ where $f: \mathbb{R} \to [0, \infty)$ is any density function of our choice.

Conditional density – cont.

- 6. Properties:
 - density
 - corresponds to conditional probability
 - different functions possible
 - OK for independent variables
- 7. Examples:
 - uniform distribution over square
 - "chain rule"

Conditional Expected value of continuous RV

8. Definition

Let (X, Y) be a continuous random vector with density $g : \mathbb{R}^2 \to [0, \infty)$, such that $\mathbb{E}|Y| < \infty$. For all $x \in \mathbb{R}$ we define the **conditional expected value of variable** Y given X = x as the expected value of a random variable with density $f_x(y) = g_{Y|X}(y|x)$, i.e. $\mathbb{E}(Y|X = x) = \int_{-\infty}^{\infty} yg_{Y|X}(y|x)dy$.

9. Example

Conditional Expected value of continuous RV – cont.

10. Transformations:

Let (X, Y) be a continuous random vector with density $g: \mathbb{R}^2 \to [0, \infty)$, and $\varphi: \mathbb{R} \to \mathbb{R}$ be a Borel function such that $\mathbb{E}|\varphi(Y)| < \infty$. Then, we have that for any $x \in \mathbb{R}$, $\mathbb{E}(\varphi(Y)|X = x) = \int_{-\infty}^{\infty} \varphi(y)g_{Y|X}(y|x)dy$.

Conditional Expectation

11. General definition of conditional expectation

Let (X, Y) be a random vector, such that $\mathbb{E}|Y| < \infty$. The conditional expected value of Y given X, demoted as $\mathbb{E}(Y|X)$, is a random variable such that $\mathbb{E}(Y|X) = m(X)$, where $m(x) = \mathbb{E}(Y|X = x)$.

12. Examples

Properties of Conditional Expectations

13. Properties of expected values

Let $X, Y, Z : \Omega \to \mathbb{R}$ be random variables such that $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$. We have: (i) If $X \ge 0$, then $\mathbb{E}(X|Z) \ge 0$. (ii) $|\mathbb{E}(X|Z)| \le \mathbb{E}(|X||Z)$. (iii) For any $a, b \in \mathbb{R}$ we have $\mathbb{E}(aX + bY|Z) = a\mathbb{E}(X|Z) + b\mathbb{E}(Y|Z)$.

Properties of Conditional Expectations – cont.

13. Specific properties

Let $X, Y : \Omega \to \mathbb{R}$ be random variables such that $\mathbb{E}|Y| < \infty$. We have that

(i) E|E(Y|X)| < ∞ and E(E(Y|X)) = EY.
(ii) If X and Y are independent, then E(Y|X) = EY.
(iii) If h(X) is a limited random variable, then E(h(X) · Y|X) = h(X)E(Y|X).

Conditional Probability

14. Definition

Let X be a random variable. For any event $A \in \mathcal{F}$, we define

 $\mathbb{P}(A|X) = \mathbb{E}(1_A|X)$

Linear regression

 Best (in terms of average square deviation) linear approximation of variable Y with variable X, i.e. aX+b: minimizes

$$f(a,b) = \mathbb{E}(Y - aX - b)^2$$
 solution:

$$a = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var} X} \quad b = \mathbb{E} Y - \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var} X} \mathbb{E} X$$

Conditional Expectation as an approximation

1. Theorem:

Let $X, Y : \Omega \to \mathbb{R}$ be random variables such that $\mathbb{E}Y^2 < \infty$. Then, the function $\varphi^* : \mathbb{R} \to \mathbb{R}$, such that $\varphi^*(x) = \mathbb{E}(Y|X = x)$, satisfies:

$\mathbb{E}(Y - \varphi^*(X))^2$

 $= \min\{\mathbb{E}(Y - \varphi(X))^2 : \varphi \text{ is a Borel function} : \mathbb{R} \to \mathbb{R}\}.$

