Probability Calculus

Anna Janicka

lecture IX, 9.12.2021

INDEPENDENCE OF RV

Plan for Today

- Expected value and covarance matrix of a RV
- 2. Independence of random variables
- 3. Multidimensional Normal RV

Expected value and covariance matrix

Definitions:

- Let (X, Y) be a two-dimensional random vector. Then, we have:
- (i) If X and Y have expected values, then the **expected** value $\mathbb{E}(X, Y)$ of the vector (X, Y) is the vector $(\mathbb{E}X, \mathbb{E}Y)$. (ii) If X and Y have variances, then the **covariance** matrix of the vector (X, Y) is the matrix $\begin{bmatrix} VarX & Cov(X, Y) \\ Cov(X, Y) & VarY \end{bmatrix}$

For higher dimensions $(\mathbb{R}^d, d \ge 3)$, we have, similarly: the expected value is the vector $(\mathbb{E}X_1, \mathbb{E}X_2, \dots, \mathbb{E}X_d)$, and the covariance matrix is the matrix $(\operatorname{Cov}(X_i, X_j))_{1 \le i,j \le d}$.

aculty of Economic Sciences

Let $X = (X_1, X_2, ..., X_n)$ be a random vector of dimension n, and $A - a \ m \times n$ matrix. (i) If X has a finite expected value, then AX also has a finite expected value, and $\mathbb{E}(AX) = A\mathbb{E}X$. (ii) If the covariance matrix Q_X of the vector X exists, then there exists also the covariance matrix of the vector AX, and it is equal to $Q_{AX} = AQ_X A^t$.

1. Definition of independence

Variables $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are independent, if for any sequence of Borel sets B_1, B_2, \ldots, B_n , we have $\mathbb{P}(X_1 \in B_1, X_2 \in B_2, \ldots, X_n \in B_n)$ $= \mathbb{P}(X_1 \in B_1) \cdot \mathbb{P}(X_2 \in B_2) \cdot \ldots \cdot \mathbb{P}(X_n \in B_n).$

2. Independence of discrete RV

Let X_1, X_2, \ldots, X_n be discrete random variables with supports S_{X_i} , respectively. In this case, X_1, X_2, \ldots, X_n are independent if and only if for any sequence x_1, x_2, \ldots, x_n such that $x_i \in S_{X_i}$, $i = 1, 2, \ldots, n$, we have

$$\bigotimes \mathbb{P}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$
$$= \mathbb{P}(X_1 = x_1) \cdot \mathbb{P}(X_2 = x_2) \cdot \dots \cdot \mathbb{P}(X_n = x_n).$$

3. Example

4. Independence of continuous RV

Let $X_1, X_2, \ldots, X_n \colon \Omega \to \mathbb{R}$ be continuous random variables with probability densities g_1, g_2, \ldots, g_n , respectively. In this case, X_1, X_2, \ldots, X_n are independent if and only if $g \colon \mathbb{R}^n \to [0, \infty)$, defined as $g(x_1, x_2, \ldots, x_n) = g_1(x_1) \cdot g_2(x_2) \cdot \ldots \cdot g_n(x_n)$, is a density function of the distribution $\mu_{(X_1, X_2, \ldots, X_n)}$.

5. Examples

uniform distribution on square

Independent RV – cont. (2)

6. Transformations of RV

Let $X_{1,1}, X_{1,2}, \ldots, X_{1,k_1}, X_{2,1}, X_{2,2}, \ldots, X_{2,k_2}, \ldots, X_{n,1}, X_{n,2}, \ldots, X_{n,k_n}$ be independent random variables, and $\varphi_i : \mathbb{R}^{k_i} \to \mathbb{R}, i = 1, 2, \ldots, n$ be Borel functions. We then have that the variables

$$Y_1 = \varphi_1(X_{1,1}, X_{1,2}, \dots, X_{1,k_1}),$$

$$Y_2 = \varphi_2(X_{2,1}, X_{2,2}, \dots, X_{2,k_2}),$$

$$Y_n = \varphi_n(X_{n,1}, X_{n,2}, \dots, X_{n,k_n})$$

are independent.

Warsaw University Faculty of Economic Sciences

Properties of independent RV

2. Expected value of product

Let X_1, X_2, \ldots, X_n be independent random variables with expected values. Then, the variable $X = X_1 \cdot X_2 \cdot \ldots \cdot X_n$ also has an expected value, and we have $\mathbb{E}X = \mathbb{E}(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = \mathbb{E}X_1 \cdot \mathbb{E}X_2 \cdot \ldots \cdot \mathbb{E}X_n.$

3. Example

4. Covariance of independent RV

Let X and Y be independent random variables, such that $\mathbb{E}|XY| < \infty$. We then have $\operatorname{Cov}(X, Y) = 0$.

5. Non-correlation

Properties of independent RV – cont.

6. One-way implication only! independence \Rightarrow non-correlation but \Leftarrow IS NOT TRUE!

7. Example – uniform distribution on circle

8. Sum of variances

Let X_1, X_2, \ldots, X_n be independent random variables with finite variances. Then, the variable $X = X_1 + X_2 + \ldots + X_n$ also has a finite variance, and we have $\operatorname{Var} X = \operatorname{Var}(X_1 + X_2 + \ldots + X_n)$

 $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \ldots + \operatorname{Var}(X_n).$

Properties of independent RV – cont.

6. One-way implication only! independence \Rightarrow non-correlation but \Leftarrow IS NOT TRUE!

7. Example – uniform distribution on circle

8. Sum of variances

Let X_1, X_2, \ldots, X_n be independent random variables with finite variances. Then, the variable $X = X_1 + X_2 + \ldots + X_n$ also has a finite variance, and we have $\operatorname{Var} X = \operatorname{Var}(X_1 + X_2 + \ldots + X_n)$ $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \ldots + \operatorname{Var}(X_n).$

 $+2\sum \operatorname{Cov}(X_i, X_j).$

Warsaw University Faculty of Economic Science:

Properties of independent RV – cont. (2)

9. Example – sum of points on dice10. Convolution of density functions

Let X and Y be independent random variables with densities g_X and g_Y , respectively. Then, the density of the variable X + Y may be presented as a **convolution** of densities g_X and g_Y :

 $g_{X+Y}(t) = g_X * g_Y(t)$

 $= \int_{\mathbb{R}} g_X(x) g_Y(t-x) dx = \int_{\mathbb{R}} g_X(t-y) g_Y(y) dy$

11. Example

Warsaw University Faculty of Economic Sciences

Convolution of densities – example

WARSAW UNIVERSITY Faculty of Economic Sciences

Multidimensional Normal RV

1. Definition

Let $m = (m_1, m_2, ..., m_n)$ be a vector in \mathbb{R}^n and let A be a positive definite $n \times n$ matrix (i.e. such that $x^t A x > 0$ for any nonzero vector $x \in \mathbb{R}^n$). A distribution with density $g(x) = \frac{\sqrt{\det A}}{(2\pi)^{n/2}} \exp\left(-\frac{(x-m)^t A(x-m)}{2}\right), \qquad x \in \mathbb{R}^n$

is a **normal** distribution with mean m and a covariance matrix $Q = A^{-1}$.

2. Affine transformations of normal RV

Two-dimensional normal RV

3. Two-dimensional normal RV with mean $m = (m_1, m_2)$ and a covariance matrix Q

$$g(x,y) = \frac{\sqrt{a_{11}a_{22} - a_{12}^2}}{2\pi}$$

$$\cdot \exp\left(-\frac{1}{2}(a_{11}(x-m_1)^2+2a_{12}(x-m_1)(y-m_2)+a_{22}(y-m_2)^2)\right)$$

 $A = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} = Q^{-1}$

WARSAW UNIVERSITY Faculty of Economic Sciences

Two-dimensional normal RV

3. Two-dimensional normal RV with mean $m = (m_1, m_2)$ and a covariance matrix Q $\sqrt{\det A}$ $g(x, y) = \frac{\sqrt{a_{11}a_{22} - a_{12}^2}}{2\pi}$

$$\cdot \exp\left(-\frac{1}{2}(a_{11}(x-m_1)^2 + 2a_{12}(x-m_1)(y-m_2) + a_{22}(y-m_2)^2)\right)$$

$$(x-m)^t A(x-m)$$

$$= \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix} = Q^{-1}$$

WARSAW UNIVERSITY Faculty of Economic Sciences

Condition of independence of normal RV

4. Theorem

Let $X = (X_1, X_2, \ldots, X_n)$ be a normal variable, and let X_1, X_2, \ldots, X_n be uncorrelated. Then, X_1, X_2, \ldots, X_n are independent.

Warsaw University Faculty of Economic Sciences