Probability Calculus

Anna Janicka

lecture VIII, 2.12.2021

RANDOM VECTORS – MULTIDIMENSIONAL RANDOM VARIABLES

Plan for Today

- 1. Definition of a Random Vector
- 2. Joint and marginal distributions
- **3**. Discrete and continuous RV
- 4. Expected values of functions
- 5. Covariance, correlation
- 6. Expected value, variance

we have

- **1.** A random vector $(X_1, X_2, ..., X_n)$
- 2. The joint distribution of a random vector:
- The (joint) distribution of a random vector $X = (X_1, X_2, ..., X_n)$ is a probability measure μ_X defined over $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, such that $\mu_X(A) = \mathbb{P}(X \in A)$.
- 3. Marginal distributions:

 $\mu_{X_i}(B) = \mathbb{P}(X_i \in B) \text{ for } B \subseteq \mathbb{R},$

such that for
$$A = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{i-1} \times B \times \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{n-i}$$

 $\overset{\text{Warsaw Un}}{=} \mathbb{P}(X_i \in B) = \mathbb{P}((X_1, X_2, \dots, X_n) \in A) = \mu_X(A).$

4. Example: joint distribution is more than the aggregate of marginal distributions.

5. Cumulative distribution function:

The cumulative distribution function of a random vector (X, Y) is a function $F_{(X,Y)} : \mathbb{R}^2 \to [0,1]$, such that $F_{(X,Y)}(s,t) = \mathbb{P}(X \leq s, Y \leq t).$

6. No simple definitions of quantiles...

Random vectors – types.

7. A discrete RV

A random vector (X, Y) is **discrete**, if there exists a countable set $S \subseteq \mathbb{R}^2$, such that $\mu_{(X,Y)}(S) = 1$.

8. Components are also discrete, marginals obtained by summation

9. A continuous RV

A random vector (X, Y) is **continuous**, if there exists a density function, i.e. a function $g : \mathbb{R}^2 \to [0, \infty)$, such that for any $A \in \mathcal{B}(\mathbb{R}^2)$, we have $\mu_{(X,Y)}(A) = \iint_A g(x, y) dx dy.$

Random vectors – types (cont.)

10. Examples of continuous RV:

- drawing from a unit square
- drawing from a circle
- a different type of density

11. Marginal distributions of continuous RV:

Let (X, Y) be a random vector with density g. The marginal distributions of X and Y are also continuous, and the respective densities are equal to $g_X(x) = \int_{\mathbb{R}} g(x, y) dy, \qquad g_Y(y) = \int_{\mathbb{R}} g(x, y) dx.$

11. Marginal distributions (cont.)

More generally, if an n-dimensional random vector has a joint density function g, then the i-th component is continuous with density g_i , such that $g_i(x_i) = \iiint_{\mathbb{R}^{n-1}} g(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_{i-1} dx_{i+1} \dots dx_n$ (the integral is over all variables other than X_i).

12. If marginals are continuous, then the joint distribution need not be.

Characteristics of random vectors

13. Expected values of functions of the components of a RV:

(i) Let (X, Y) be a discrete random vector with support S, and let $\phi : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then, $\mathbb{E}\phi(X, Y) = \sum_{(x,y)\in S} \phi(x, y) \mathbb{P}((X, Y) = (x, y))$ (if the sum converges absolutely). (ii) Let (X, Y) be a continuous random vector with density g and let $\phi : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Then, $\mathbb{E}\phi(X, Y) = \iint_{\mathbb{R}^2} \phi(x, y) g(x, y) dx dy$ (if the expected value exists).

The covariance and correlation coefficient

15. Definitions

Let (X, Y) be a random vector, such that X and Y have expected values, and such that $\mathbb{E}|XY| < \infty$. The **covariance** of variables X and Y is the value $\operatorname{Cov}(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$ If, additionally, the variances of the two random variables exist, and $\operatorname{Var} X > 0$ and $\operatorname{Var} Y > 0$, we may define the (Pearson's) correlation coefficient of variables X and Y as $\rho(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var} X \cdot \operatorname{Var} Y}} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}.$

Covariance and correlation coefficient – cont.

16. Properties:

- invariance to shifts
- bilinearity of the covariance
- variance as a special case
- simplifying formula: $Cov(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y.$
- capture the *linear* relationship, in other cases may be misleading

Correlation coefficient – properties

17. Schwarz inequality

Let $X, Y : \Omega \to \mathbb{R}$ be random variables such that $\mathbb{E}X^2 < \infty$ and $\mathbb{E}Y^2 < \infty$. We then have $|\mathbb{E}XY| \leq (\mathbb{E}X^2)^{1/2} (\mathbb{E}Y^2)^{1/2}$.

Furthermore, we have an equality if and only if there exist two numbers $a, b \in \mathbb{R}$ not simultaneously equal to zero, such that $\mathbb{P}(aX = bY) = 1$.

18. Consequences for the correlation coef.

Let $X, Y : \Omega \to \mathbb{R}$ be random variables with finite nonzero variances. Then $|\rho(X, Y)| \leq 1$. Furthermore, if $|\rho(X, Y)| = 1$, then there exist two numbers $a, b \in \mathbb{R}$, such that Y = aX + b.

Expected value and covariance matrix

19. Definitions:

- Let (X, Y) be a two-dimensional random vector. Then, we have:
- (i) If X and Y have expected values, then the **expected** value $\mathbb{E}(X, Y)$ of the vector (X, Y) is the vector $(\mathbb{E}X, \mathbb{E}Y)$. (ii) If X and Y have variances, then the **covariance** matrix of the vector (X, Y) is the matrix $\begin{bmatrix} VarX & Cov(X, Y) \\ Cov(X, Y) & VarY \end{bmatrix}$

For higher dimensions $(\mathbb{R}^d, d \ge 3)$, we have, similarly: the expected value is the vector $(\mathbb{E}X_1, \mathbb{E}X_2, \dots, \mathbb{E}X_d)$, and the covariance matrix is the matrix $(\operatorname{Cov}(X_i, X_j))_{1 \le i,j \le d}$.

