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Lecture 10

1. Conditional Expected Value

When dealing with conditional probability, we have seen how to recalculate our assessment
of the probability of an event given additional knowledge that we had about the results of the
experiment. We did this by “rescaling” the initial probability within Ω to a smaller sample
space, within the conditional event. Now that we have random variables defined over the
sample spaces, we may wish to determine what is the effect that additional knowledge may
have on our assessment of the distribution of a random variable; in most cases, we will be
interested in the average effect, i.e. in the expected value of the random variable of interest
under the condition (described by a different random variable). For example, if we wish to
assess the expected value of the sum of points obtained in two dice rolls, we expect an average
value of 7; if, however, we knew that in the first roll we obtained a six, our assessment should be
modified – now we intuitively expect that, on average, we will obtain a total of 9.5. Similarly,
when drawing a point randomly from a unit square, we expect that the product of the two
coefficients of the point will be equal to 1

2 ·
1
2 = 1

4 ; if, however, we knew that X = 1
5 , we would

intuitively expect that EXY = 1
5 ·

1
2 = 1

10 .
These considerations lead to the definition of a conditional expected value, which we will

define only in two cases: for a discrete distribution and for a continuous distribution. The de-
finition in the discrete case is intuitive and strictly corresponds to the definition of conditional
probability. If we wish to define probability conditional on a discrete variable X being equal
to x (given that it makes sense, i.e. P(X = x) > 0), we can treat the new distribution as a
distribution resulting from assuming probability conditional on the event {X = x}. Then we
will be in a position to define the conditional expected value as an expected value calculated
using this conditional probability:

Definition 1. Let (X, Y ) be a discrete random vector such that EY exists. For any x ∈ R
such that P(X = x) > 0, we define the conditional expected value of variable Y given
X = x as the expected value of a random variable with distribution

µ(A) = P(Y ∈ A|X = x).

That is, if Sx = {y ∈ R : P(X = x, Y = y) > 0}, we have

E(Y |X = x) =
∑
y∈Sx

yP(Y = y|X = x).

Examples:
(1) We toss a coin twice. Let X be the number of heads in two tosses, and let Y be equal

to 1 if we obtained a head in the first toss and 0 otherwise. We have that
X\Y 0 1 m. X

0 1
4 0 1

4
1 1

4
1
4

1
2

2 0 1
4

1
4

m. Y 1
2

1
2

We have:

P(X = 0|Y = 0) =
1
2
,P(X = 1|Y = 0) =

1
2
,P(X = 2|Y = 0) = 0,

so
E(X|Y = 0) = 0 · 1

2
+ 1 · 1

2
+ 2 · 0 =

1
2
.

Similarly,

E(X|Y = 1) = 0 · 0 + 1 · 1
2

+ 2 · 1
2

=
3
2
.
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(2) If Y is a function of X, i.e. Y = f(X), then we have that the set Sx consists only of
one point: y = f(x), which means that E(Y |X = x) = f(x) · P(Y = f(x)|X = x) =
f(x) · 1 = f(x).

We may also wish to calculate the conditional expected value of a function of variable Y
instead of Y ; in which case, we may use the following theorem:

Theorem 1. Let (X, Y ) be a discrete random vector, and ϕ : R → R a Borel function such
that E|ϕ(Y )| <∞. We then have that for any x such that P(X = x) > 0:

E(ϕ(Y )|X = x) =
∑
y∈Sx

ϕ(y)P(Y = y|X = x),

where Sx = {y ∈ R : P(X = x, Y = y) > 0}.

The case of continuous random vectors is somewhat more complicated. We can not define
the conditional probability as before, due to the fact that none of the points in the support
of the density function of a continuous vector satisfy the condition that their probability is
non-negative; on the contrary, the probability of taking on any specific value for a continuous
distribution is always 0. We will be able to define, however, conditional density:

Definition 2. Let (X, Y ) be a continuous random vector with density g : R2 → [0,∞). Let
gX(x) =

∫∞
−∞ g(x, y)dy be the marginal density of X. For all x ∈ R, we define the conditional

density of variable Y given X = x as the function

gY |X(y|x) =


g(x,y)
gX(x) if gX(x) > 0

f(y) otherwise,

where f : R→ [0,∞) is any density function of our choice.

The density function f is needed only for completeness; it is never used (and so the shape
of f is totally unimportant).

Note that this definition of conditional density corresponds to the definition of conditional
probability, where we normalize the probability of a product of events by dividing by the
probability of the condition; the conditional density is obtained in a similar way: we take the
joint density function and normalize it by the marginal density of the variable defining the
condition. The conditional density fulfills all the requirements for a density function, so it
may be thought of as the density of a conditional distribution.

Note also that the conditional density is not defined unequivocally; we have several reasons
for that. One reason is the arbitrary assumption of the density function f ; the other reasons
are due to the fact that each of the densities (joint and marginal) may also be modified in
particular points without consequence for the distribution.

A third note that is worth making is that the conditional density “behaves” as expected
in the case of independent random variables: if the variables are independent, then the joint
density function may be presented as the product of marginal density functions, in which case
the division by one of them gives the (unconditional) marginal density of the other function as
the conditional density. That is, the value of one variable has no impact upon our assessment
of the density of the other value.

Examples:
(1) Let (X, Y ) be a variable with uniform distribution over a square with vertices at points

(1, 0), (0, 1), (−1, 0), (0,−1). The joint density of (X, Y ) is

g(x, y) =
1
2
1{|x|+|y|¬1}(x, y).

The marginal density of X is equal to
∫∞
−∞ g(x, y)dy = (1− |x|)1(−1,1)(x). The condi-

tional density of Y , given X = x, may therefore be written as

gY |X(y|x) =


1{|y|¬1−|x|}(x,y)

2(1−|x|) = 1(−1+|x|,1−|x|)(y)
2(1−|x|) for x ∈ (−1, 1)

any density otherwise.
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Given such a density function, we may calculate, for example, the conditional pro-
bability P(Y  1

2 |X = x):

P(Y  1
2
|X = x) =

∫ ∞
1
2

gY |X(y|x)dy =


1/2−|x|
2(1−|x|) if |x| ¬ 1

2

0 if x ∈ (−1, 1)\(−1/2, 1/2).

For other values of x we do not define the conditional probability.
(2) Using the chain rule, we may transform conditional densities in the same way we

transformed conditional probabilities. For example, let us draw a number Λ uniformly
from (0, 1), and then, knowing the value of Λ = λ, let us draw X from an exponential
distribution with parameter λ. We can easily find the joint density of the vector (Λ, X):
since the density of Λ is equal to gΛ(λ) = 1(0,1)(λ), and the conditional density of X
given that Λ = λ is equal to gX|Λ(x|λ) = λe−λx1(0,∞)(x), we have that

g(Λ,X)(λ, x) = gX|Λ(x|λ) · gΛ(λ) = λe−λx1(0,1)(λ)1(0,∞)(x).

Knowing the joint density of (Λ, X), we can now find the unconditional marginal
density of X, gX :

gX(x) =
∫ ∞
−∞

g(Λ,X)(λ, x)dλ = 1(0,∞)(x)
∫ 1

0
λe−λxdλ = 1(0,∞)(x)

[
−λ
x
e−λx − 1

x2
e−λx

∣∣∣∣∣
1

0

= 1(0,∞)(x)
( 1
x2
− 1
x
e−x − 1

x2
e−x

)
.

Having defined the continuous equivalent of the conditional probability, we can now define
the conditional expected value in the continuous case – as the expected value of a variable
with the conditional, rather than unconditional, density:

Definition 3. Let (X, Y ) be a continuous random vector with density g : R2 → [0,∞), such
that E|Y | < ∞. For all x ∈ R we define the conditional expected value of variable Y
given X = x as the expected value of a random variable with density fx(y) = gY |X(y|x), i.e.

E(Y |X = x) =
∫ ∞
−∞

ygY |X(y|x)dy.

In the first example above, we had gY |X(y|x) = 1(−1+|x|,1−|x|)(y)
2(1−|x|) for x ∈ (−1, 1), so that

E(Y |X = x) =
∫ ∞
−∞

y
1(−1+|x|,1−|x|)(x, y)

2(1− |x|)
=
∫ 1−|x|

−1+|x|

y

2(1− |x|)
dy = 0.

Also in the continuous conditional expectation case, the “normal” properties of expected
values are maintained:

Theorem 2. Let (X, Y ) be a continuous random vector with density g : R2 → [0,∞), and
ϕ : R→ R be a Borel function such that E|ϕ(Y )| <∞. Then, we have that for any x ∈ R,

E(ϕ(Y )|X = x) =
∫ ∞
−∞

ϕ(y)gY |X(y|x)dy.

It is often convenient to treat the conditional expected value, which as it has been defined
is a function of the value of the unconditional variable, as a random variable itself. We shall
use the following definition, for both the discrete and continuous cases:

Definition 4. Let (X, Y ) be a random vector, such that E|Y | <∞. The conditional expec-
ted value of Y given X, denoted as E(Y |X), is a random variable such that

E(Y |X) = m(X),

where m(x) = E(Y |X = x).

Examples:
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(1) In the first discrete example, we had E(X|Y = 0) = 1
2 and E(X|Y = 1) = 3

2 . We can
therefore say that E(X|Y = y) = y + 1

2 , in which case we have that E(X|Y ) = Y + 1
2 .

(2) In the continuous example with a uniform distribution over the square with area 2, we
had E(Y |X = x) = 0, which means that E(Y |X) = 0 (i.e. a random variable which is
always equal to 0).

The conditional expected value has all the basic properties of “ordinary” expected values,
for example:

Theorem 3. Let X, Y, Z : Ω→ R be random variables such that E|X|,E|Y | <∞. We have:
(i) If X  0, then E(X|Z)  0.

(ii) |E(X|Z)| ¬ E(|X||Z).
(iii) For any a, b ∈ R we have E(aX + bY |Z) = aE(X|Z) + bE(Y |Z).

The conditional expected value also has many useful properties specific to the definition,
for example:

Theorem 4. Let X, Y : Ω→ R be random variables such that E|Y | <∞. We have that
(i) E|E(Y |X)| <∞ and E(E(Y |X)) = EY .

(ii) If X and Y are independent, then E(Y |X) = EY .
(iii) If h(X) is a limited random variable, then E(h(X) · Y |X) = h(X)E(Y |X).

Given the definition of the conditional expectation, we can also define probability conditio-
nal on random variables:

Definition 5. Let X be a random variable. For any event A ∈ F , we define

P(A|X) = E(1A|X).

2. Linear Regression

We will briefly touch upon a topic which is of great practical interest and can be derived from
probability calculus considerations, but lies predominantly within the scope of econometrics
(and statistics) and therefore will not be covered thoroughly by this course. This is the topic
of optimal approximation of one random variable with another, in the most simple case –
linear approximation.

Let us assume that we have two random variables defined over the same sample space Ω,
with a given joint distribution. Let us also assume that one of them is much easier to observe,
or that it may be observed earlier and therefore serve as a predictor of the other variable; or
that we simply wish to find a “rule of thumb” for a relationship between two variables. In
all of these cases, we will be interested in approximating one variable with another variable.
The simplest possible form of this approximation – the easiest computationally – is the linear
form, where we look for an approximation of variable Y with variable X of the type aX + b,
where a, b ∈ R.

When choosing the best possible approximation, we also have to choose the criterion of
comparison of different formulae; in the case of approximating one random variable with a
different random variable, it seems plausible to assume that our aim will be to minimize the
average deviation of the approximation from the real value; the deviation will be computed in
the natural metric in R2, namely – quadratic. In other words, the problem of finding the best
linear approximation may be reduced to finding a, b ∈ R such that f(a, b) = E(Y − aX − b)2

is minimized.
Let us rephrase the expression slightly:

f(a, b) = E(Y 2+a2X2+b2−2aXY−2bY+2abX) = E(Y 2)+a2EX2−2bEY+2abEX+2aEXY+b2;

therefore, for a given value of a, f(a, b) as a function of b is a quadratic function, with minimum
at b = EY − aEX. It will therefore suffice to find the minimum value of function

h(a) = f(a,EY − aEX) = E(Y − EY − a(X − EX))2 = VarY + a2VarX − 2aCov(X, Y ).
4



This minimum (given that VarX 6= 0) is equal to

a =
Cov(X, Y )

VarX
,

in which case

b = EY − Cov(X, Y )
VarX

EX.
The value of the parameter a may be transformed slightly: a = ρX,Y · σYσX .

At the minimum, the value of the mean quadratic error of the approximation, referred
to as the residual variance, is σ2

Y (1 − ρ2
X,Y ). Note that the residual variance is zero (the

approximation is perfect) when the variables have perfect linear correlation (in which case
|ρX,Y | = 1), and is equal to σ2

Y (there is no explanation of Y with X) if the variables are not
(linearly) correlated.

Note that in order to find the best linear approximation, we did not need full information
about the joint distribution of the two variables; the knowledge of the covariance was sufficient.
This is very convenient, since in practice, more often than not, we will not have full knowledge
about the two variables to be analyzed; in most cases, we will only have an empirical sample. In
this case, however, it is sufficient to calculate the sample means, variances and covariance of the
two variables (which can be done effectively), to be able to construct the linear approximation.
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