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Lecture 9

1. Independent Random Variables

During the previous lecture, when we introduced the concept of a joint distribution of a
random vector, we also introduced relationships between the coordinates of random vectors.
During this lecture, we will concentrate on the situation when the relationship between the
coordinates is trivial (nonexistent): when the variables are independent. The general definition
we will apply is the following:

Definition 1. Variables X1, . . . , Xn : Ω→ R are independent, if for any sequence of Borel
sets B1, B2, . . . , Bn, we have

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) = P(X1 ∈ B1) · P(X2 ∈ B2) · . . . · P(Xn ∈ Bn).

Note that the condition in the definition is the condition of independence of events {X1 ∈
B1}, . . . , {Xn ∈ Bn} (for any subsets B1, B2, . . . , Bn) – and thus checking the independence
of a group of random variables requires the same caution as checking the independence of a
group of events (and distinction between pairwise and joint independence).

The definition requires the comparison of the joint distribution with the product of mar-
ginal distributions – for all possible (measurable) subsets of Rn. In practice, this may prove
complicated and time-consuming. Fortunately, the condition may be simplified somewhat for
special groups of random variables.

Theorem 1. Let X1, X2, . . . , Xn be discrete random variables with supports SXi, respectively.
In this case, X1, X2, . . . , Xn are independent if and only if for any sequence x1, x2, . . ., xn
such that xi ∈ SXi, i = 1, 2, . . . , n, we have

P(X1 = x1, X2 = x2, . . . , Xn = xn) = P(X1 = x1) · P(X2 = x2) · . . . · P(Xn = xn).

The above theorem permits to check the condition from the definition for a very limited
class of subsets Bi – namely, singletons of the elements of the supports only. For example:

(1) We roll a die three times. Let Xi denote the number obtained in the i-th roll. Then,
for any sequence of (x1, x2, x3), such that xi ∈ {1, 2, . . . , 6}, we have

P(X1 = x1, X2 = x2, X3 = x3) =
1

216
.

On the other hand, if we look at P(Xi = xi), we have that (recalling the definition of
a marginal distribution)

P(Xi = xi) =
36
216

=
1
6
,

so that we have

P(X1 = x1, X2 = x2, X3 = x3) =
1

216
=
(1

6

)3
= P(X1 = x1)P(X2 = x2)P(X3 = x3).

In the case of continuous random variables, the condition from the definition may be trans-
formed to a condition on densities:

Theorem 2. Let X1, X2, . . . , Xn : Ω → R be continuous random variables with probability
densities g1, g2, . . . , gn, respectively. In this case, X1, X2, . . . , Xn are independent if and only
if g : Rn → [0,∞), defined as

g(x1, x2, . . . , xn) = g1(x1) · g2(x2) · . . . · gn(xn),
is a probability density function of the distribution µ(X1,X2,...,Xn).

Examples:
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(1) Let (X, Y ) be a random vector from a uniform distribution over the square (±1,±1),
i.e. with density

f(x, y) =
1
4

1[−1,1](x)1[−1,1](y).

By simple integration, we may check that X and Y have the same marginal density –
g(x) = 1

21[−1,1](x). We therefore have f(x, y) = g(x)g(y), which means that variables
X and Y are independent.

(2) Let (X, Y ) be a random vector from a uniform distribution over the disk D with center
(0, 0) and radius 1, i.e. with density

f(x, y) =
1
π

1{x2+y2¬1}.

We will find the marginal distributions of X and Y :

fX(x) =
∫ +∞
−∞

f(x, y)dy =
∫ +∞
−∞

1
π

1{x2+y2¬1}dy =
∫ √1−x2
−
√
1−x2

1
π

1(−1,1)(x)dy

=
1
π

1(−1,1)(x)
∫ √1−x2
−
√
1−x2

dy =
1
π

1(−1,1)(x)2
√

1− x2 =
2
√

1− x2
π

1(−1,1)(x).

The distribution is symmetric, therefore this is also the density of the variable Y .
Because g(x)g(y) 6= f(x, y) for very many points (in particular, the left hand side is
nonnegative for all points within the square (±1,±1) but outside the disk D, while
the right hand side for these points is zero), variables X and Y are not independent.

When verifying independence of random variables, we may – in some cases – be able to
decompose these random variables into functions of simpler random variables (or, inversely, be
interested in the independence of functions of random variables). In such cases, the following
theorem may prove to be of use:

Theorem 3. Let X1,1, X1,2, . . . , X1,k1 , X2,1, X2,2, . . . , X2,k2 , . . . , Xn,1, Xn,2, . . . , Xn,kn be inde-
pendent random variables, and ϕi : Rki → R, i = 1, 2, . . . , n be Borel functions. We then have
that the variables

Y1 = ϕ1(X1,1, X1,2, . . . , X1,k1),

Y2 = ϕ2(X2,1, X2,2, . . . , X2,k2),
. . .

Yn = ϕn(Xn,1, Xn,2, . . . , Xn,kn)

are independent.

Let us now verify whether the independence of random variables has any impact on the
parameters of distributions of random vectors. Indeed, we may prove that

Theorem 4. Let X1, X2, . . . , Xn be independent random variables with expected values. Then,
the variable X = X1 ·X2 · . . . ·Xn also has an expected value, and we have

EX = E(X1 ·X2 · . . . ·Xn) = EX1 · EX2 · . . . · EXn.

This theorem allows to simplify calculations of expected values of random variables which
can be decomposed into products of independent random variables – for example, if we wanted
to calculate the expected value of the product of the number of points obtained during 100
dice rolls, we would have EY = EX1 · EX2 · . . . · EX100 = (3.5)100.

This theorem also has a different important implication. We have seen that the covariance
of two random variables X and Y may be presented in the following way:

Cov(X, Y ) = E(X · Y )− EX · EY.
Now, if we know that variables X and Y are independent, we have that

E(X · Y )− EX · EY = EX · EY − EX · EY = 0,

i.e.
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Theorem 5. Let X and Y be independent random variables, such that E|XY | <∞. We then
have Cov(X, Y ) = 0.

If, additionally, these random variables had variances and were not constant (i.e. had non-
zero finite variances), we would have that

ρ(X, Y ) = 0,

and we would say that these variables are not correlated (as a consequence, variables which
are correlated may not be independent). It is important to note, however, that the implication
does not run in the other direction; i.e. in general, if the covariance is equal to zero, this is
not a sufficient condition for the independence of random variables. For example, we have
seen that the two coordinates of a random vector drawn uniformly from the unit disk are not
independent. On the other hand, we have:

EX = EY =
∫ 1
−1
x

2
π

√
1− x2dx = 0

and

Cov(X, Y ) = EXY − 0 · 0 = EXY =
1
π

∫ 1
−1

∫ √1−x2
−
√
1−x2

xydydx = 0,

due to the fact that the internal integral is equal to zero.
We have already seen that the decomposition of a random variable into a sum of random

variables may simplify the calculations of the expected value of the initial random variable.
This is also true for calculating the variance – although in this case, the calculations become
less complicated still when the random variables from the decomposition are independent.

Let X1, X2, . . . , Xn be random variables with finite variances. Without the loss of generality
of what will follow, we may assume that these variables all have means equal to zero (variances
are invariant to shifts). We then have

Var(X1 +X2 + . . .+Xn) = E(X1 +X2 + . . .+Xn)2 = EX21 + EX22 + . . .+ EX2n + 2
∑
i<j

EXiXj

= Var(X1) + Var(X2) + . . .+ Var(Xn) + 2
∑
i<j

Cov(Xi, Xj).

In the case of independent random variables, we have

Theorem 6. Let X1, X2, . . . , Xn be independent random variables with finite variances. Then,
the variable X = X1 +X2 + . . .+Xn also has a finite variance, and we have

VarX = Var(X1 +X2 + . . .+Xn) = Var(X1) + Var(X2) + . . .+ Var(Xn).

In our example with 100 dice rolls, and a decomposition of the sum of points X into the
sum of points obtained in particular rolls, X = X1 + X2 + . . . + X100, we would have (see
calculations in previous lectures)

VarXi =
35
12
,

which gives us

VarX =
3500
12

.

We will conclude our considerations of independent random variables with a theorem de-
scribing the density function of a sum of two independent continuous random variables. We
have:

Theorem 7. Let X and Y be independent random variables with densities gX and gY , re-
spectively. Then, the density of the variable X + Y may be presented as a convolution of
densities gX and gY :

gX+Y (t) = gX ∗ gY (t) =
∫
R
gX(x)gY (t− x)dx =

∫
R
gX(t− y)gY (y)dy.
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Example: Let X and Y be independent random variables with uniform distributions over
[0, 1]. The density of the sum of these variables, X + Y , may be written in the form:

gX+Y (t) =
∫ ∞
−∞

1[0,1](x)1[0,1](t− x)dx.

t − x ∈ [0, 1] if and only if 0 ¬ t − x ¬ 1, which is equivalent to −t ¬ −x ¬ 1 − t, i.e.
t ­ x ­ t − 1. The density is thus nonzero if and only if the intervals [0, 1] and [t − 1, t]
overlap; we have two such cases:
if t ∈ [0, 1], then

gX+Y (t) =
∫ t
0
dx = t,

and if t ∈ [1, 2], then

gX+Y (t) =
∫ 1
t−1

dx = 2− t,

which gives us

gX+Y (t) =


t t ∈ [0, 1]
2− t t ∈ (1, 2]
0 otherwise

.

2. Multidimensional Normal Random Vectors

We are now well acquainted with the normal distribution for one-dimensional random varia-
bles. A very important extension of this class of distributions is the multidimensional normal
random vector. We have seen that the single-dimensional normal distribution is unequivo-
cally defined by the mean and variance; each such distribution may be obtained as a linear
(or rather affine) transformation of the standard normal variable, and each such transfor-
mation of a standard normal variable is a normal variable. Very similar properties hold for
multidimensional random variables:

Definition 2. Let m = (m1,m2, . . . ,mn) be a vector in Rn and let A be a positive definite
n × n matrix (i.e. such that xtAx > 0 for any nonzero vector x ∈ Rn). A distribution with
density

g(x) =

√
detA

(2π)n/2
exp

(
−(x−m)tA(x−m)

2

)
, x ∈ Rn

is a normal distribution with mean m and a covariance matrix Q = A−1.

Each normal vector is an affine transformation of a standard normal vector; each affine
transformation TX+k (where T and k are a matrix and vector of appropriate dimensions) of
a normal vector X with mean m and a variance Q is a normal vector with mean Tm+ k and
variance TQT t. In the case of two-dimensional random vectors, the definition of the density
function simplifies to the following notation:

g(x, y) =

√
a11a22 − a212

2π
· exp

(
−1

2
(a11(x−m1)2 + 2a12(x−m1)(y −m2) + a22(y −m2)2)

)
where (m1,m2) is the vector of the means and

A =
[
a11 a12
a12 a22

]
= Q−1

is the inverse of the covariance matrix (A must be positive definite, i.e. such that a11 > 0 and
detA > 0).

The standard two-dimensional normal vector is a vector with mean (0, 0) and a covariance

matrix A =
[

1 0
0 1

]
; the density of this vector is equal to

g(x, y) =
1

2π
exp

(
−1

2
(x2 + y2)

)
.
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Apart from being a very common distribution in real life, the normal distribution has many
interesting and unique properties. One of them may be summarized in the following theorem:

Theorem 8. Let X = (X1, X2, . . . , Xn) be a normal variable, and let X1, X2, . . . , Xn be
uncorrelated. Then, X1, X2, . . . , Xn are independent.

This theorem states that for random variables from the class of normal distributions the
implication which usually is unidirectional (from independence to lack of correlation) runs
also in the other direction.
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