Probability Calculus 2021/2022

Problem set 7

1. Let X be a random variable with density $g(x)=\frac{4}{\pi} \frac{1}{1+x^{2}} 1_{[0,1]}(x)$. Calculate $\mathbb{E} X$ and $\mathbb{E}(3-2 X)$.
2. Let X be a random variable with density $g(x)=\frac{1}{2} \sin x 1_{[0, \pi]}(x)$. Calculate $\mathbb{E} X$ and $\mathbb{E} \cos X$.
3. Let X be a standard normal variable. Calculate $\mathbb{E} e^{2 X}$ and $\mathbb{E} e^{X^{2} / 4}$.
4. Let X be a random variable describing the weekly income of a worker from a given factory, with a cumulative distribution function of

$$
F(t)= \begin{cases}0 & \text { for } t<200 \\ c t^{2}(1500-t) & \text { for } 200 \leqslant t<1000 \\ 1 & \text { for } t \geqslant 1000\end{cases}
$$

where $c=2 \cdot 10^{-9}$. Calculate the mean income of a worker.
5. Let X be a random variable with a Poisson distribution with parameter λ. Calculate $\mathbb{E} X$, $\mathbb{E} X(X-1), \mathbb{E} X^{2}$ and $\mathbb{E} 2^{X}$.
6. Each edge and each diagonal of a hexagon is either colored red, blue or green. Let X denote the number of triangles with vertices in the hexagon's vertices that are colored with a single color. Calculate $\mathbb{E} X$.
7. We roll a die until we obtain each possible result. Find the mean number of rolls.
8. There are n students in a group. One day, the lecturer distributed graded tests randomly (he gave one test to each student). Let X denote the number of students who got their own test. Find $\mathbb{E} X$.

Some additional problems

Theory (you should know coming into this class):

1. The definition of the expected value of a continuous random variable X.
2. Calculation of the expected value of a transformation of a random variable.

Problems (you should know how to solve after this class)

1. Let X be a random variable from a standard normal distribution. Calculate $\mathbb{E} X(X+1)$ and $\mathbb{E} e^{3 X^{2} / 8}$.
2. Let X be a random variable with density $g(x)=(e-1)^{-1} e^{1-x} 1_{[0,1]}(x)$. Find $\mathbb{E}(X+1)$ and $\mathbb{E} 2^{X+2}$.
3. Let X be a random variable from a geometric distribution with parameter $p(\mathbb{P}(X=k)=$ $\left.p(1-p)^{k-1}, k=1,2, \ldots\right)$. Find $\mathbb{E} \min \{X, 100\}$.
4. From the set $\{1,2, \ldots, 49\}$ we randomly draw 6 numbers without replacement. Let X signify the number of odd numbers. Find $\mathbb{E} X$.
5. We have two light bulbs of type I and three light bulbs of type $I I$. The working life of a light bulb of type I has an exponential distribution with parameter 1, and of light bulb 2 - an exponential distribution with parameter $\frac{1}{2}$. In case a light bulb burns out in our lamp, we change it. Let X denote the total time a lamp works until the supply of light bulbs is finished. Find $\mathbb{E} X$.
6. 10 girls and 10 boys are randomly paired. Calculate the expected value of the number of pairs consisting of girls only.
