1. Let X be a standard normal variable. Find the density of $Y=e^{X}$ and $Y=X^{2}$.
2. Find the quantile of rank $p=5 / 16$ for a) an exponential distribution with parameter λ, b) a Binomial distribution with parameters 4 and $\frac{1}{2}, c$) a Poisson distribution with parameter 1.
3. Let X be a random variable such that

$$
\mathbb{P}(X=-1)=\mathbb{P}(X=0)=\frac{1}{4}, \quad \mathbb{P}(X=3)=\frac{1}{3}, \quad \mathbb{P}(X=5)=\frac{1}{6} .
$$

Calculate $\mathbb{E} X$ and $\mathbb{E}(2 X-1)$.
4. Consider the following game: we toss a symmetric coin until heads appear. If heads appear in the n-th toss, we win $(1.5)^{n}$ dollars. What is a reasonable price for participation in this game? And if the gain for tails in the n-th toss was 2^{n} dollars?
5. From a box containing n balls with numbers from 1 to n we draw a ball twice, with replacement. Let X denote the maximum number obtained. Calculate $\mathbb{E} X$.
6. The number of accidents in a city on a given day has a Poisson distribution with parameter 10 on Mondays to Fridays, and a Poisson distribution with parameter 3 on Saturdays and Sundays. Calculate the mean number of accidents in a given week.

Some additional problems

Theory (you should know coming into the sixth class):

1. What is a quantile of rank p ?
2. Define the expected value of a discrete random variable X.
3. Describe the properties of the expected value operator.

Problems (you should know how to solve after class 6)
4. Let X be a random variable with values from the set $\{1,2, \ldots, 10\}$, such that

$$
\mathbb{P}(X=1)=\frac{1}{2}, \quad \mathbb{P}(X=2)=\mathbb{P}(X=3)=\ldots=\mathbb{P}(X=10)=p
$$

Find $p, \mathbb{E} X$ and $\mathbb{E}(4 X+5)$.
5. Let X be a random variable from a distribution concentrated over the set $\{1,2, \ldots, 10\}$, such that

$$
\mathbb{P}(X=1)=\frac{1}{2}, \quad \mathbb{P}(X=2)=\mathbb{P}(X=3)=\ldots=\mathbb{P}(X=10)=p .
$$

Calculate $p, \mathbb{E} X$ and $\mathbb{E}(4 X+5)$.
6. Let X be a random variable such that $P(X=k)=\frac{1}{n}$ for $k=2,4,6 \ldots, 2 n$. Calculate $\mathbb{E} X$ and $\mathbb{E}(2 X+1)$.
7. Let X be a random variable from a Binomial distribution with parameters 5 and $\frac{1}{3}$. Find $\mathbb{E} X$ and $\mathbb{E}(4 X-1)$.

