Probability Calculus 2021/2022

Problem set 5

1. Let X be a random variable with a density function equal to

$$
g(x)=2 x^{-2} 1_{[2, \infty)}(x) .
$$

Find the CDF of variable X and the CDF of variable X^{2}.
2. Let F denote the CDF of a random variable X, defined by:

$$
F(t)= \begin{cases}0 & \text { if } t<-2, \\ \frac{1}{3} & \text { if } t \in[-2,0), \\ \frac{1}{3} t+1 / 2 & \text { if } t \in[0,1), \\ \frac{5}{6} & \text { if } t \in[1,5), \\ 1 & \text { if } t \geqslant 5\end{cases}
$$

Calculate $\mathbb{P}(X \in(3,7)), \mathbb{P}(X \in[-2,-1]), \mathbb{P}(X \in[-2,-1)), \mathbb{P}(X \in(-2,-1)), \mathbb{P}(X=0)$, $\mathbb{P}(X=2)$. Is the distribution of X discrete? Is the distribution of X continuous?
3. Let X be a random variable with density $g(x)=\frac{3}{8} x^{2} 1_{(0,2)}(x)$. Find the distributions of a) $\max \{X, 1\}$, b) X^{-2}. Are these distributions continuous? If yes, calculate the density.
4. Let X be a uniform random variable over $(0,1)$. Find the distribution of $Y=-\ln X$.
5. Each day, an individual calls a male colleague (with probability $1 / 3$) or a female colleague (with probability $2 / 3$). The duration of a call with a male colleague is a random variable from a uniform distribution over the interval $[1,5]$, and with a female colleague - an exponential distribution with parameter $1 / 5$. Let X denote the length of the telephone call on a given day. Find the distribution of random variable X and its density.

Some additional problems

Theory (you should know after the fifth lecture and before the fifth class):

1. What is the CDF of a probability distribution? What are the properties that a function must fulfill in order to be a CDF? How do we determine the type of distribution (discrete/continuous) from the CDF?

Problems (you should know how to solve after class 5)

1. Let X be a random variable with density $g(x)=\frac{1}{2} \sin x 1_{[0, \pi]}(x)$. Show that $\pi-X$ has the same distribution as X.
2. Let X be a random variable from a binomial distribution $B(n, p)$. Verify that $n-X$ has a binomial distribution $B(n, 1-p)$.
3. We randomly draw a point from a disk of radius R. Let X denote the distance of this point from the center of the disk. Find the distribution of X^{2}.
4. Let X be a random variable with density $g(x)=\frac{1}{2} x 1_{[0,2]}(x)$. Find the distribution of $Y=$ $\min \{X-1,0\}$. Does Y have a density function?
