Probability Calculus

Anna Janicka

lecture VII, 25.11.2021

VARIANCE

MOMENTS

EMPIRICAL DISTRIBUTIONS

- 1. Calculating EX examples cont.
- 2. Variance
- 3. Moments
- 4. Empirical distributions
- 5. Intro to random vectors

Calculating EX based on the CDF – reminder Let X be a non-negative random variable. (i) If $\int_0^\infty \mathbb{P}(X > t)dt < \infty$, then X has an expected value and $\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt$. (ii) If $p \in (0, \infty)$ and $\int_0^\infty pt^{p-1}\mathbb{P}(X > t)dt < \infty$, then X^p has an expected value and $\mathbb{E}X^p = \int_0^\infty pt^{p-1}\mathbb{P}(X > t)dt$.

Examples

- geometric distribution
- exponential distribution
- *p*-th moments
 - non-discrete non-continuous RV

Variance

1. Definition

Let X be a random variable such that $\mathbb{E}|X| < \infty$ and $\mathbb{E}(X - \mathbb{E}X)^2 < \infty$. The variance of X is defined as $D^2X = VarX = \mathbb{E}(X - \mathbb{E}X)^2$. The standard deviation of variable X is the square root of the variance: $\sigma_X = \sqrt{D^2X}$.

- 2. Properties
 - depends on distribution only
 - exists if single condition on EX², if limited
 - simplified calculations: $D^2X = \mathbb{E}X^2 (\mathbb{E}X)^2$

Variance – interpretation

Warsaw University Faculty of Economic Sciences

Variance – cont.

- 3. Examples:
 - interpretation
 - die roll
 - uniform distribution

4. Properties, theorem:

Let X be a random variable with a variance. (i) $D^2X \ge 0$, and the equality holds if and only if there exists a value $a \in \mathbb{R}$ such that $\mathbb{P}(X = a) = 1$. (ii) $D^2(bX) = b^2 D^2 X$ for any $b \in \mathbb{R}$. (iii) $D^2(X + c) = D^2 X$ for any $c \in \mathbb{R}$.

Variance – cont. (2)

 $N(m, \sigma_{-}^2)$

5. Parameters of the normal distribution:

variance

mean

Moments

1. Definitions

For $p \in (0, \infty)$, we define: (i) the absolute moment of rank p for random variable X as $\mathbb{E}[X]^p$ (if this value is finite); For $p \in \mathbb{N}$, we define: *(ii) the* **moment** *of* rank *p for* random variable X as $\mathbb{E}X^p$ (provided that the p-th absolute moment exists); *(iii) the* **central moment** *of* rank *p for* random variable X as $\mathbb{E}(X - \mathbb{E}X)^p$ (provided that the p-th absolute moment exists).

Moments: skewness, kurtosis

2. Definitions

Let X be a random variable such that $\mathbb{E}|X|^3 < \infty$. The **skewness** of X is $\alpha_3 = \frac{\mathbb{E}(X - \mathbb{E}X)^3}{(D^2 X)^{3/2}} = \frac{\mathbb{E}(X - \mathbb{E}X)^3}{\sigma_X^3}$. Let X be a random variable such that $\mathbb{E}|X|^4 < \infty$. The **kurtosis** of X is $\alpha_4 = \frac{\mathbb{E}(X - \mathbb{E}X)^4}{(D^2 X)^2} - 3 = \frac{\mathbb{E}(X - \mathbb{E}X)^4}{\sigma_X^4} - 3$.

3. Example: standard normal distribution

 In reality, we frequently do not know the distributions of random variables, and work with samples instead.

2.

Let X_1, X_2, \ldots, X_n be random variables with unknown distributions. An **Empirical distribution (measure)** for this sample is $\mu_n(A) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(A) = \frac{|\{i \le n : X_i \in A\}|}{n}$,

3. An empirical distribution function of the sample X_1, X_2, \ldots, X_n is the function $F \colon \mathbb{R} \to [0,1]$, such that $F_n(t) = \mu_n((-\infty,t]) = \frac{|\{i \leq n \colon X_i \leq t\}|}{n}$.

this is the CDF of the empirical distribution

4. A Quantile of rank
$$p$$

of the sample X_1, \ldots, X_n
is any number x_p , such that
 $\mu_n((-\infty, x_p]) \ge p$
 $\mu_n([x_p, \infty)) \ge 1 - p.$

Empirical distributions – cont (2)

- **5.** A Sample mean for X_1, X_2, \ldots, X_n is equal to $m = \frac{X_1 + X_2 + \ldots + X_n}{n}$, i.e. the arithmetic mean of X_1, X_2, \ldots, X_n .
- 6. A sample variance for X_1, X_2, \ldots, X_n is equal to $s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$, where m is the sample mean.

the mean and the variance of the empirical distribution

we have

- **1.** A random vector $(X_1, X_2, ..., X_n)$
- 2. The joint distribution of a random vector:
- The (joint) distribution of a random vector $X = (X_1, X_2, ..., X_n)$ is a probability measure μ_X defined over $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, such that $\mu_X(A) = \mathbb{P}(X \in A)$.
- 3. Marginal distributions:

 $\mu_{X_i}(B) = \mathbb{P}(X_i \in B) \text{ for } B \subseteq \mathbb{R},$

such that for
$$A = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{i-1} \times B \times \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{n-i}$$

 $\overset{\text{Warsaw Un}}{=} \mathbb{P}(X_i \in B) = \mathbb{P}((X_1, X_2, \dots, X_n) \in A) = \mu_X(A).$

4. Example: joint distribution is more than the aggregate of marginal distributions.

5. Cumulative distribution function:

The cumulative distribution function of a random vector (X, Y) is a function $F_{(X,Y)} : \mathbb{R}^2 \to [0,1]$, such that $F_{(X,Y)}(s,t) = \mathbb{P}(X \leq s, Y \leq t).$

6. No simple definitions of quantiles...

Random vectors – types.

7. A discrete RV

A random vector (X, Y) is **discrete**, if there exists a countable set $S \subseteq \mathbb{R}^2$, such that $\mu_{(X,Y)}(S) = 1$.

8. Components are also discrete, marginals obtained by summation

9. A continuous RV

A random vector (X, Y) is **continuous**, if there exists a density function, i.e. a function $g : \mathbb{R}^2 \to [0, \infty)$, such that for any $A \in \mathcal{B}(\mathbb{R}^2)$, we have $\mu_{(X,Y)}(A) = \iint_A g(x, y) dx dy$.

