Probability Calculus

Anna Janicka

lecture VI, 19.11.2021

EXPECTED VALUE – cont.

Expected value for discrete random variables – cont.

Expected value for continuous random variables

Properties of the EX operator

Warsaw University Faculty of Economic Sciences

Expected value – discrete RV – reminder

1. Definition of expected value for discrete RV

Let X be a random variable with a discrete distribution, concentrated on $S \subset \mathbb{R}$, and let $p_x = \mathbb{P}(X = x)$ for $x \in S$. We will say that the expected value of X is finite if $\sum_{x \in S} |x| p_x < \infty$. Then we can define this **expected value** of X as $\mathbb{E}X = \sum_{x \in S} xp_x$.

mean value, depends on the distribution only for a finite set S, the EX always exists

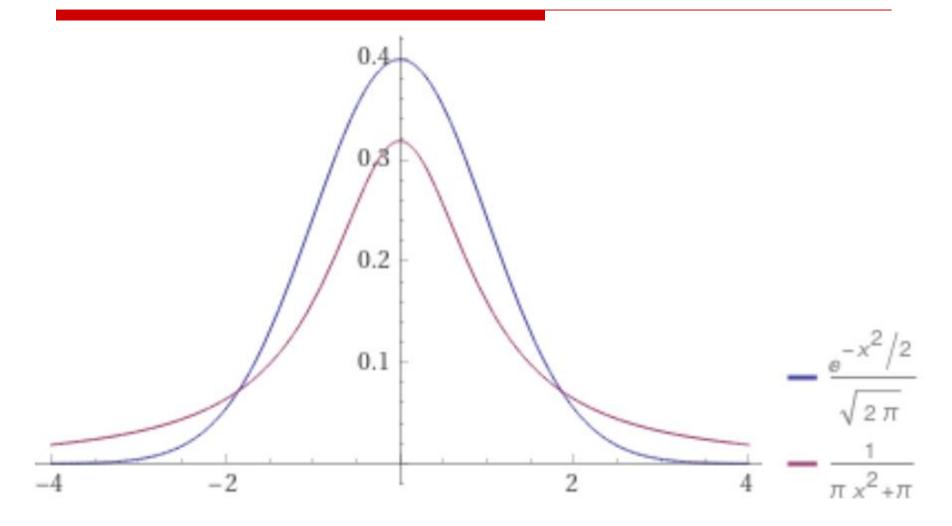
Expected value – discrete RV. cont.

- 2. Examples of calculations
 - single-valued RV
 - die roll
 - Binomial distribution (n,p)
 - variables without EX:
 - series does not converge at all
 - □ series does not converge absolutely

Expected value – continuous RV

- **3.** Definition of expected value for continuous RV Let X be a random variable with density g. If $\int_{\mathbb{R}} |x|g(x)dx < \infty$, then we will say the expected value of X exists. We define this expected value of X as $\mathbb{E}X = \int_{\mathbb{R}} xg(x)dx$.
- 4. EX for a limited RV always exists
- 5. Examples of calculations
 - uniform distribution
 - standard normal distribution
 - Cauchy distribution

Gaussian and Cauchy densities



Expected value – properties (all RV)

6. Properties of EX

Let X and Y be random variables with expected values. (i) If $X \ge 0$, then $\mathbb{E}X \ge 0$. (ii) If $X \le Y$, then $\mathbb{E}X \le \mathbb{E}Y$. (iii) $\mathbb{E}X \le \mathbb{E}|X|$. (iv) If $a, b \in \mathbb{R}$, then aX + bY has an expected value and $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$. (v) If $X = 1_A$, then $\mathbb{E}X = \mathbb{P}(A)$.

7. Generalization of *(iv)*8. Examples

Expected value of a function of a RV

9. Theorem

Let $\phi : \mathbb{R} \to \mathbb{R}$ be a Borel function.

(i) If X is discrete, concentrated on the set S, and $p_x = \mathbb{P}(X = x)$ for $x \in S$, then the random variable $\phi(X)$ has an expected value if and only if $\sum_{x \in S} |\phi(x)| p_x < \infty$, and the expected value is equal to $\mathbb{E}\phi(X) = \sum_{x \in S} \phi(x) p_x$. (ii) If X is continuous with density g, then the random variable $\phi(X)$ has an expected value if and only if $\int_R |\phi(x)| g(x) dx < \infty$, and the expected value is equal to $\mathbb{E}\phi(X) = \int_R \phi(x) g(x) dx$.

10. Examples

Expected value of a non-negative RV

11. Calculating EX based on the CDF:

for non-negative integer values

$$\begin{split} \mathbb{E}X &= \sum_{k=0}^{\infty} k \mathbb{P}(X=k) = \sum_{k=1}^{\infty} k \mathbb{P}(X=k). \\ &= \mathbb{P}(X=1) + \\ \mathbb{P}(X=2) + \mathbb{P}(X=2) + \\ \mathbb{P}(X=3) + \mathbb{P}(X=3) + \mathbb{P}(X=3) + \\ \mathbb{P}(X=4) + \mathbb{P}(X=4) + \mathbb{P}(X=4) + \mathbb{P}(X=4) + \end{split}$$

and eventually:

. . .

$$\mathbb{E}X = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k) = \sum_{k=0}^{\infty} \mathbb{P}(X > k).$$

12. Calculating EX based on the CDF – general case of non-negative RV

Let X be a non-negative random variable. (i) If $\int_0^\infty \mathbb{P}(X > t) dt < \infty$, then X has an expected value and $\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t) dt$. (ii) If $p \in (0, \infty)$ and $\int_0^\infty p t^{p-1} \mathbb{P}(X > t) dt < \infty$, then X^p has an expected value and $\mathbb{E}X^p = \int_0^\infty p t^{p-1} \mathbb{P}(X > t) dt$.

- 13. Examples
 - geometric distribution
 - exponential distribution
 - *p*-th moments

non-discrete non-continuous RV

- 1. Mean value
- 2. For discrete RV: weighted average
- **3**. For continuous RV: average weighted by density
- 4. Linear operator
- 5. Calculations for non-negative RV
- 6. Calculating $E\phi(X)$

