Probability Calculus

Anna Janicka

lecture V, 4.11.2021

CUMULATIVE DISTRIBUTION FUNCTION, EXPECTED VALUE – INTRO

- □ Continuous RV cont.
- Cumulative Distribution Functions
- □ Transformations of random variables
- Quantiles
- Expected value for discrete random variables

Continuous Random variable examples – cont.

Examples of continuous random variables

- uniform distribution
- exponential distribution
- standard normal distribution
- General) normal distribution

Random variables – the CDF

1. The definition of a CDF The Cumulative distribution function of a random variable $X : \Omega \to \mathbb{R}$ is a function $F_X : \mathbb{R} \to [0, 1]$, such that $F_X(t) = \mathbb{P}(X \leq t)$.

depends on the distribution only! \rightarrow CDF of distribution

Random variables – the CDF

- 2. Examples of CDFs
 - Dirac delta
 - Two-point distribution discrete distribution
 - Exponential distribution
 - Normal distribution no simple form...

Warsaw University Faculty of Economic Sciences

CDFs

3. Properties of the CDF

The cumulative distribution function F_X of a random variable X has the following properties: (i) F_X is nondecreasing, (ii) $\lim_{t\to\infty} F_X(t) = 1$ and $\lim_{t\to-\infty} F_X(t) = 0$, (iii) F_X is right-continuous. **4.** CDF \rightarrow distribution

For any function $F : \mathbb{R} \to \mathbb{R}$ satisfying the conditions (i)-(iii) above, there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$ such that F is the CDF of X. Furthermore, the distribution of X is determined unequivocally.

CDFs – cont.

4. Further properties of the CDF:

If F_X is a cumulative distribution function of a random variable X, then for all $t \in \mathbb{R}$ we have $F_X(t-) = \mathbb{P}(X < t)$ and $F_X(t) - F_X(t-) = \mathbb{P}(X = t)$. In particular, if F_X is continuous at point t, then $\mathbb{P}(X = t) = 0$.

Warsaw University Faculty of Economic Sciences

CDFs – cont (2)

5. CDF \rightarrow density

Let F be the CDF of a random variable X. 1. If F is not continuous, then X does not have a continuous distribution (does not have a density function). 2. Assume F is continuous. If F is differentiable apart from a finite set of points, then the function $g(t) = \begin{cases} F'(t) & \text{if } F'(t) \text{ exists,} \\ 0 & \text{otherwise,} \end{cases}$ is a density function for X.

6. Examples

uniform distribution

distribution that is neither discrete nor continuous

aculty of Economic Sciences

Transformation of random variables

1. Well-behaved transformations of continuous variables

Assume X is a random variable with density f. If the values of X fall within the interval (a, b)(with probability 1), and $\varphi : (a, b) \to \mathbb{R}$ is C^1 and $\varphi'(x) \neq 0$ for $x \in (a, b)$, then $Y = \varphi(X)$ is continuous with a density function $g(y) = f(h(y))|h'(y)|1_{\varphi((a,b))}(y),$ where $h(s) = \varphi^{-1}(s)$.

2. Example

Quantiles

1. Definition

Let X be a random variable and $p \in [0, 1]$. A quantile of rank p of the variable X is any value x_p , such that $\mathbb{P}(X \leq x_p) \geq p$ and $\mathbb{P}(X \geq x_p) \geq 1 - p$.

2. Examples

- continuous distribution (N(0,1))
- discrete distribution

Expected value – discrete RV

1. Motivation & intuition

2. Definition of expected value for discrete RV

Let X be a random variable with a discrete distribution, concentrated on $S \subset \mathbb{R}$, and let $p_x = \mathbb{P}(X = x)$ for $x \in S$. We will say that the expected value of X is finite if $\sum_{x \in S} |x| p_x < \infty$. Then we can define this **expected value** of X as $\mathbb{E}X = \sum_{x \in S} xp_x$.

mean value, depends on the distribution only for a finite set S, the EX always exists

Expected value – discrete RV. cont.

- 3. Examples of calculations
 - single-valued RV
 - die roll
 - Binomial distribution (n,p)
 - variables without EX:
 - series does not converge at all
 - □ series does not converge absolutely

