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Lecture 7

1. Variance

The expected value is not the only parameter useful in describing random variables. A
second commonly used characteristic is the variance (and its square root, the standard devia-
tion).

Definition 1. Let X be a random variable such that E|X| <∞ and E(X − EX)2 <∞. The
variance of X is defined as

D2X = VarX = E(X − EX)2.

The standard deviation of variable X is the square root of the variance: σX =
√
D2X.

Note that the variance depends only on the distribution of the random variable, therefore in
many cases we will refer to the variance of a distribution. The two conditions for the existence
of the variance may be simplified slightly: it may be shown that it suffices that EX2 <∞. If
a random variable is limited, its variance always exists.

In many cases, it is easier to calculate the variance using a simplified formula rather than
straight from the definition:

D2X =E(X − EX)2 = E(X2 − 2XEX + (EX)2) = E(X2)− 2EXEX + (EX)2 =

EX2 − (EX)2.

The variance of a random variable is the mean of the square of the deviance of the random
variable from its mean. Therefore, we expect that variables with small variances will take on
values (relatively) close to their means, while variables with large variances – far from their
means. In many cases we wish to describe the deviation of a variable from its mean with the
use of a parameter which is of the same measure as the values of the variable itself – in such
cases, we will revert to the standard deviation.

Examples:
(1) Let X and Y be two variables with zero mean: P(X = 1) = P(X = −1) = 1

2 and
P(Y = 100) = P(Y = −100) = 1

2 . The variance of X is equal to

D2X =
1
2

(12 + (−1)2)− 02 = 1, with σX = 1,

while the variance of Y is equal to

D2Y =
1
2

(1002 + (−100)2)− 02 = 1002 with σY = 100.

We see that the variance (and the standard deviation) of Y is much larger than that
of X, as the values of Y are further from the mean than the values of X.

(2) Let X be the number of points obtained on a die in a single roll. We already know
that EX = 7

2 and EX2 = 91
6 , so that

D2X =
91
6
− 49

4
=

35
12

.
(3) Let X have a uniform distribution over [a, b]. We already know that EX = a+b

2 . We
have

EX2 =
∫ b

a
x2

1
b− a

dx =
1

b− a
· b
3 − a3

3
=
b2 + ab+ a2

3
,

and therefore

D2X =
b2 + ab+ a2

3
−
(
a+ b

2

)2
=

(b− a)2

12
.
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The variance, unlike the expected value, is not a linear operator. It has, however, some
properties which allow to simplify calculations of linear combinations of random variables:

Theorem 1. Let X be a random variable with a variance.
(i) D2X  0, and the equality holds if and only if there exists a value a ∈ R such that
P(X = a) = 1 (i.e., X ∼ δa).
(ii) D2(bX) = b2D2X for any b ∈ R.
(iii) D2(X + c) = D2X for any c ∈ R.

(4) We will use the above theorem to simplify calculations of the parameters of a normal
distribution N (m,σ2). Let m ∈ R, σ > 0 and let X ∼ N (0, 1) and Y = σX +m. We
have:

FY (t) = P(σX +m ¬ t) = P
(
X ¬ t−m

σ

)
=
∫ t−m

σ

−∞

1√
2π

exp
(
−x2

2

)
dx.

Substituting x = y−m
σ

, we have dx = dy
σ

and

FY (t) =
∫ t

−∞

1√
2πσ

exp
(
−(y −m)2

2σ2

)
dy,

which shows that Y = σX +m is distributed normally: Y ∼ N (m,σ2).
Making use of the properties of the expected value and variance, we may write:

EY = E(σX +m) = σEX +m = m,

and
D2Y = D2(σX +m) = D2(σX) = σ2D2X.

We will now calculate the variance of the standard normal distribution:

D2X = EX2 − (EX)2 = EX2 =
∫ ∞
−∞

x2 · 1√
2π

exp(−x2/2)dx

=
∫ ∞
−∞

x ·
(
− 1√

2π
exp(−x2/2)

)′
dx

=
(
−x 1√

2π
exp(−x2/2)

)∣∣∣∣∣
∞

−∞
+
∫ ∞
−∞

1 · 1√
2π

exp(−x2/2)dx = 0 + 1 = 1.

This means that
D2Y = σ2 · 1 = σ2,

i.e. the m and σ parameters of the normal distribution describe the mean and the
standard deviation, respectively.

2. Moments

Both the mean and the variance of a random variable are special cases of parameters referred
to as moments :

Definition 2. For p ∈ (0,∞), we define:
(i) the absolute moment of rank p for random variable X as E|X|p (if this value is finite);
For p ∈ N, we define:
(ii) the moment of rank p for random variable X as EXp (provided that the p-th absolute
moment exists);
(iii) the central moment of rank p for random variable X as E(X − EX)p (provided that
the p-th absolute moment exists).

The mean is the first moment; the variance is the second central moment.
Moments play a big role in statistics. The most popular distribution parameters used for

describing random variables, apart from the mean and the variance, are based on the third
and fourth central moments:
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Definition 3. Let X be a random variable such that E|X|3 <∞. The skewness of X is

α3 =
E(X − EX)3

(D2X)3/2
=

E(X − EX)3

σ3X
.

Definition 4. Let X be a random variable such that E|X|4 <∞. The kurtosis of X is

α4 =
E(X − EX)4

(D2X)2
− 3 =

E(X − EX)4

σ4X
− 3.

Skewness describes the shape of the distribution. It may be:
• positive (the random variable is then said to be right-skewed, right-tailed, or skewed

to the right), when the “right tail” of a unimodal distribution is longer or fatter (the
mass of the distribution is on the left hand side, i.e. with relatively few high values);
or
• negative (the random variable is then said to be left-skewed, left-tailed, or skewed to

the left), when the “left tail” of a unimodal distribution is longer or fatter (the mass
of the distribution is on the right hand side, i.e. with relatively few low values); or
• zero – if the distribution is symmetric around the mean, but not only then (the situ-

ation becomes complicated especially for multi-modal distributions).
For example, a random variable which takes on four, equally probable, values: 1, 2, 3, 1000
would be skewed to the right (α3 ≈ 1.15), while a random variable which takes on values 1,
1000, 1001, 1002 with probabilities equal to 14 would be skewed to the left (α3 ≈ −1.15). A
random variable with equally probable values of −1000,−1001, 1000, 1001 has zero skewness.

Kurtosis describes the concentration (“peakedness”) of the distribution. Kurtosis (nowa-
days) is defined by comparison with the standard normal distribution (for which the fourth
central moment and thus the fraction from the definition is equal to 3), and is sometimes
referred to as excess kurtosis. Kurtosis may be positive (a leptokurtic distribution), when the
distribution is more “peaked” than the standard normal distribution; or negative (a platykur-
tic distribution), when the distribution is more flat than the standard normal distribution; or
zero.

Example: Let X be a random variable from a standard normal distribution. Then, EX = 0,
and the central moments reduce to ordinary moments. We have:

α3 =
E(X − EX)3

σ3
=

EX3

1
=
∫ ∞
−∞

x3 · 1√
2π
e−x

2/2dx = 0,

because the integrand is an odd function – the distribution is not skewed in either direction
(that’s because it is symmetric). We also have

EX4 =
∫ ∞
−∞

x4 · 1
2π
e−x

2/2dx =
∫ ∞
−∞

x3 ·
(
− 1√

2π
exp(−x2/2)

)′
dx

=
(
−x3 1√

2π
exp(−x2/2)

)∣∣∣∣∣
∞

−∞
+
∫ ∞
−∞

3x2 · 1√
2π

exp(−x2/2)dx = 0 + 3EX2 = 3,

which means that

α4 =
E(X − EX)4

σ4X
− 3 =

EX4

1
− 3 = 3− 3 = 0.

Therefore, the standard normal distribution has zero (excess) kurtosis.

3. Empirical distributions

In most real-life situations, we are faced with random variables for which we can not specify
distributions nor, in some cases, even the range of values; this may be the case for example
if we want to study the distribution of earnings in a population. Furthermore, in most cases
we are also faced not with whole populations, but rather with their subsets (called samples).
In such cases, if we wish to formulate statements or test hypotheses based on the available
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information, we will need to revert to statistical methods. At this point we will just signal
that the latter are in many cases based on the so-called empirical distributions.

Definition 5. Let X1, X2, . . . , Xn be random variables with unknown distributions. An em-
pirical distribution (measure) for this sample is µn(A) = 1

n

∑n
i=1 δXi(A) = |{i¬n : Xi∈A}|

n

Definition 6. An empirical distribution function of the sample X1, X2, . . . , Xn is the
function F : R→ [0, 1], such that Fn(t) = µn((−∞, t]) = |{i¬n : Xi¬t}|

n
.

This is the CDF of the empirical distribution.

Definition 7. A Quantile of rank p of the sample X1, . . . , Xn is any number xp, such that
µn((−∞, xp])  p, and µn([xp,∞))  1− p.

These are the quantiles of the empirical distribution.

Definition 8. A sample mean for X1, X2, . . . , Xn is equal to m = X1+X2+...+Xn
n

, i.e. the
arithmetic mean of X1, X2, . . . , Xn.

Definition 9. A sample variance for X1, X2, . . . , Xn is equal to s2 = 1
n

∑n
i=1(Xi − m)2,

where m is the sample mean.

The sample mean and the sample variance are the mean and the variance of the empirical
distribution, respectively.
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