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Lecture 6

1. Expected Value

Is it worthwhile to gamble? To take part in lotteries? What does the answer to these
questions depend on? Obviously, the willingness to engage in different lotteries depends on
the psychological characteristics of the potential participant, whether he is risk-seeking or risk
averse, etc. There exists, however, an objective measure, with which we can assess the essence
of the game, if the game is more of a “loss” than a “win”, i.e. the (average) profitability. This
measure is the expected value.

Let us assume we are presented with the possibility to participate in the following lottery:
we roll a die; if a six appears, we win $100, if the result is different, we pay $30. What should
we expect of this game? If we were to play this game n times, then a six appears in on average
n
6 cases, so our win after n games would intuitively be on average

n

6
· 100− 5n

6
· 30 = −50n

6
< 0,

so the result is not favorable. On average, we lose. In a single game, we expect that this loss
would amount, on average, to

1
6
· 100 +

5
6
· (−30) = −50

6
< 0.

In other words, when thinking about the average, we weigh the possible results with the
probabilities of obtaining specific results. This leads to the following definition:

Definition 1. Let X be a random variable with a discrete distribution, concentrated on S ⊂ R,
and let px = P(X = x) for x ∈ S. We will say that the expected value of X is finite if the sum∑

x∈S
|x|px <∞.

Then we can define this expected value of X as

EX =
∑
x∈S

xpx.

The expected value is often referred to as the mean value. Note that we need the condition
that the series of products of values and probabilities converges absolutely – otherwise it
would be possible to obtain different values of EX depending on the order of summation. The
expected value depends only on the distribution of the random variable.

Note that the expected value of a random variable which takes on values from a finite set
always exists (the series converges, because it is finite).

Examples:
(1) For the most simple random variable, the Dirac delta: if P(X = a) = 1 for a given

a ∈ R, then EX = a · 1 = a.
(2) We roll a die. Let X denote the number obtained. P(X = k) = 1

6 for k = 1, 2, . . . , 6,
so

EX =
6∑
i=1

i · 1
6

= 3.5.

(3) Let X be a random variable from a binomial distribution with parameters n and p.
We have:

EX =
n∑
k=0

kP(X = k) =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

l=k−1= np
n−1∑
l=0

(
n− 1
l

)
pl(1− p)n−1−l = np.
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(4) Let X be a random variable over {1, 2, . . .} such that

P(X = k) =
1

k(k + 1)
=

1
k
− 1
k + 1

, k = 1, 2, . . . .

Then, the expected value of X does not exist:
∞∑
k=1

kP(X = k) =
∞∑
k=1

1
k + 1

=∞.

(5) Let X be a random variable such that

P
(
X =

(−2)k

k

)
=

1
2k
, k = 1, 2, . . . .

Then, the expected value of X does not exist:
∞∑
k=1

|xk|P(X = xk) =
∞∑
k=1

| − 2|k

k
· 1

2k
=
∞∑
k=1

1
k

=∞,

although the series from the definition of the expected value itself does converge:
∞∑
k=1

xkP(X = xk) =
∞∑
k=1

(−1)k

k
= − ln 2.

For continuous random variables, the definition is similar (we change sums into integrals
and probability into density):

Definition 2. Let X be a random variable with density g. If∫
R
|x|g(x)dx <∞,

then we will say the expected value of X exists. We define this expected value of X as

EX =
∫
R
xg(x)dx.

Again, as in the discrete case, the expected value depends only on the distribution of the
random variable. At this point we can only note that both the discrete and the continuous
definitions are special cases of a more general definition which “works” for all types of random
variables, but is too complicated for this course. However, we will see below how the above
definitions may be extended to “work” also in case of random variables which are neither
discrete nor continuous.

Note that if a continuous random variable is limited (say, takes on only values from a limited
range (a, b) with probability 1), then the expected value of the variable exists:∫

R
|x|g(x)dx ¬

∫
R

max{|a|, |b|}g(x)dx = max{|a|, |b|}.

Examples:
(1) Let X be uniformly distributed over (a, b). Then X is limited and thus the expected

value exists:

EX =
∫
R
xg(x)dx =

∫ b

a
x

1
b− a

dx =
a+ b

2
.

(2) Let X be a random variable from the standard normal distribution N (0, 1). Then∫
R
|x| 1√

2π
exp(−x2/2)dx =

2√
2π

∫ ∞
0

x exp(−x2/2)dx =
2√
2π

(−e−x2/2)
∣∣∣∞
0

=
2√
2π
,

so the expected value exists and since the variable is symmetric around 0, is equal to∫
R
x

1√
2π

exp(−x2/2)dx = 0.
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(3) Let X be a random variable from a Cauchy distribution, i.e. with density g(x) =
1

π(1+x2) . Although this variable too is symmetric around 0, the expected value does not
exist, since∫

R

|x|
π(1 + x2)

dx =
2
π

∫ ∞
0

x

1 + x2
dx =

2
π

(ln(1 + x2))
∣∣∣∞
0

=∞.

Due to the specificity of the definition of the expected value, the properties of this operator
are “inherited” from the operators used for definition, i.e. sums and integers – which means
that the expected value is a linear operator and has the following properties, which simplify
many calculations:

Theorem 1. Let X and Y be random variables with expected values.
(i) If X ­ 0, then EX ­ 0.
(ii) If X ¬ Y , then EX ¬ EY .
(iii) EX ¬ E|X|.
(iv) If a, b ∈ R, then aX + bY has an expected value and E(aX + bY ) = aEX + bEY.
(v) If X = 1A, then EX = P(A).

Note that property (iv), by induction, may be further generalized: if X1, X2, . . . , Xn are
random variables with expected values and a1, a2, . . . , an ∈ R, then the variable a1X1+a2X2+
. . .+ anXn has an expected value, and

E(a1X1 + a2X2 + . . .+ anXn) = a1EX1 + a2EX2 + . . .+ anEXn.

In particular, we have

E(X1 +X2 + . . .+Xn) = EX1 + EX2 + . . .+ EXn.

This last property is extremely useful, as shown by the following examples:

(1) We roll a die 100 times and let X denote the sum of numbers obtained. If we wanted
to calculate the expected value of X from the definition, we would first have to find
the distribution of X, which is complicated and would lead to horrible calculations.
We can, however, decompose X into a sum of the results of rolls 1, 2, . . . , 100: X =
X1 + X2 + . . . X100, where Xi is the number obtained in the i-th roll, which permits
us to write

EX = EX1 + EX2 + . . .+ EX100 = 100 · 3.5 = 350.

(2) There are 20 addressed envelopes and 20 letters. A secretary randomly puts letters
into envelopes. Let X denote the number of letters which were placed in the correct
envelopes. What is the expected value of X? Again, if we wanted to calculate the
expected value from definition, we would need to go through complicated calculations
to find the distribution of X (and then the expected value). We can, however, apply
the same method and decompose X into a sum of variables X1 +X2 + . . . X20, where

Xi = 1{i−th letter is in the correct envelope},

=

1 if the i-th letter is in the correct envelope,
0 otherwise.

We then have

EX = EX1+EX2+ . . .+EX20 = 20 ·P(a specific letter is in the correct envelope) =
20
20

= 1.

We may wish to calculate not only the expected value of a random variable, but also of a
function of this random variable. The following theorem justifies a simple procedure:

Theorem 2. Let φ : R→ R be a Borel function.
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(i) If X is discrete, concentrated on the set S, and px = P(X = x) for x ∈ S, then the
random variable φ(X) has an expected value if and only if∑

x∈S
|φ(x)|px <∞,

and the expected value is equal to

Eφ(X) =
∑
x∈S

φ(x)px.

(ii) If X is continuous with density g, then the random variable φ(X) has an expected value
if and only if ∫

R
|φ(x)|g(x)dx <∞,

and the expected value is equal to

Eφ(X) =
∫
R
φ(x)g(x)dx.

Examples:
(1) Let X denote the number obtained in a single die roll. The expected value of any

transformation of X exists, since X is concentrated on a finite set. We have

EX2 =
6∑

k=1

k2
1
6

=
91
6
.

(2) Let X be uniformly distributed over [0, π2 ]. Then the expected value of the sine of this
angle is

E sinX =
∫ π
2

0
sinx · 2

π
dx =

2
π
.

(We do not need to check the existence of the expected value, since sine is a limited
function and thus the result is obvious).

(3) The above theorem also permits to calculate the expected values of random variables
which are neither discrete nor continuous, if only they can be presented as a function
of such variables. For example, let X have a uniform distribution over [0, 2]. Let φ :
R → R be given by the formula φ(x) = min{x, 1}. φ(X) is neither continuous nor
discrete. However, it suffices that X is. Due to the fact that both X and φ(x) are
limited, the expected value of φ(X) exists; it is equal to

Emin{X, 1} = Eφ(X) =
∫
R
φ(x)g(x)dx =

∫ 2
0

min{x, 1} · 1
2
dx

=
∫ 1
0
x · 1

2
dx+

∫ 2
1

1 · 1
2
dx =

1
4

+
1
2

=
3
4
.

We will conclude our considerations of the methods of calculation of expected values by
considering an alternative way of calculating EX for non-negative random variables – with
the use of the cumulative distribution function (or rather 1− CDF).

Let us first consider a non-negative integer-valued random variableX. If we were to calculate
EX from the definition, we would have:

EX =
∞∑
k=0

kP(X = k) =
∞∑
k=1

kP(X = k).

We can decompose this sum in the following way:

EX = P(X = 1) +
P(X = 2) + P(X = 2) +
P(X = 3) + P(X = 3) + P(X = 3) +
P(X = 4) + P(X = 4) + P(X = 4) + P(X = 4) +
. . .
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The initial formula includes summation first within rows, and then taking the sum of the
sums of rows. All the elements in the series are non-negative, therefore we may change the
order of summation without a change in the outcome; we may first sum the elements within
columns, and then take the sum of all columns.

The sum of elements in the first column is equal to P(X ­ 1) or P(X > 0), the sum of
elements in the second column is equal to P(X ­ 2) or P(X > 1), etc. Therefore, the initial
sum in the expected value may be written as

EX =
∞∑
k=1

P(X ­ k) =
∞∑
k=0

P(X > k).

This result may be generalized to any non-negative valued random variable.

Theorem 3. Let X be a non-negative random variable.
(i) If

∫∞
0 P(X > t)dt <∞, then X has an expected value and

EX =
∫ ∞
0

P(X > t)dt.

(ii) If p ∈ (0,∞) and
∫∞
0 ptp−1P(X > t)dt <∞, then Xp has an expected value and

EXp =
∫ ∞
0

ptp−1P(X > t)dt.

In many cases, the above theorem allows to simplify calculations (avoid integration by
parts) or allows the calculation of an expected value which otherwise could not be calculated
given the definitions used until now (in particular, calculation of the expected value of random
variables which are neither discrete nor continuous).

(1) Let X be a random variable from a geometric distribution. We have P(X = k) =
p(1− p)k−1 for k = 1, 2, . . ., and P (X > k) = (1− p)k for such k. We then have

EX =
∫ ∞
0

P(X > t)dt =
∞∑
k=0

∫ k+1

k
P(X > t)dt =

∞∑
k=0

∫ k+1

k
(1− p)kdt =

∞∑
k=0

(1−p)k =
1

1− (1− p)
=

1
p
.

Note that we could have skipped the underlined part in the calculations and used the
special case for non-negative integer-valued random variables.

(2) Let X be a random variable from an exponential distribution with parameter λ, i.e.
with a CDF FX(t) = (1− e−λt)1(0,∞)(t). We have

EX =
∫ ∞
0

e−λtdt =
(
−1
λ
e−λt

)∣∣∣∣∞
0

=
1
λ
.

(3) Let X be a random variable with density g(x) = 2
x2

1[2,∞)(x). Let p ∈ (0,∞). Does
EXp exist? We have

P(X > t) =

1 if t < 2,
2
t

if t ­ 2.

On the basis of the above theorem, to determine the existence of EXp it suffices to
check the integral∫ ∞
0

ptp−1P(X > t)dt =
∫ 2
0
ptp−1dt+

∫ ∞
2

ptp−1P(X > t)dt = 2p + 2p
∫ ∞
2

tp−2dt.

The last integral is finite if p < 1, and is equal to 2pp/(1− p). Therefore, the expected
value of Xp exists if and only if p < 1 and is equal to 2p/(1− p).

(4) Let X be an exponentially distributed random variable with parameter 1, and let
Y = max{X, 2}. We have FY (t) = (1− e−t)1[2,∞)(t). We can calculate EY as∫ ∞

0
1− FY (t)dt =

∫ 2
0

1dt+
∫ ∞
2

e−tdt = 2 + (−e−t)
∣∣∣∞
2

= 2 + e−2.
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