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Lecture 5

1. Describing Real-valued Random Variables

In many cases, the description of a random variable with the use of the probability di-
stribution function may be somewhat complicated and unnatural. If we deal with continuous
random variables, we have a simple way of describing the characteristics – with the use of the
density function. How about a simple function that would work for all kinds of variables, and
would allow to identify the distribution unequivocally?

We may now revert to our initial considerations upon introducing random variables. An
inherent part of the definition of a random variable was the assumption that we wish to be
able to assign probability to events of the type X ¬ t for any t ∈ R. It is now time to make
good use of this assumption, and define

Definition 1. The Cumulative distribution function of a random variable X : Ω → R
is a function FX : R→ [0, 1], such that

FX(t) = P(X ¬ t).

Note that in the above definition, the cumulative distribution function depends only on the
probability distribution of a random variable, and not on the definition of the random variable.
Therefore, it makes sense to refer to the cumulative distribution functions of distributions
(rather than variables). For the sake od shortness, we will sometimes abbreviate the notion
“cumulative distribution function” to CDF. Let us now consider some simple examples:

(1) The CDF of the Dirac delta δa distribution, i.e. a random variable X such that
P(X = a) = 1, is

FX(t) =

0 for t < a

1 for t  a.

(2) The CDF of a two-point distribution looks similarly, but is slightly more complicated.
For example, if P(X = −2) = 1

3 , and P(X = 2) = 2
3 , then

FX(t) =


0 for t < −2
1
3 for t ∈ [−2, 2)
1 for t  2.

(3) The CDF of a continuous random variable is somewhat different. For example, if X is
a random variable distributed exponentially with parameter λ = 1, i.e. with density
gX(x) = e−x1[0,∞)(x), then

FX(t) = P(X ¬ t) =
∫ t

−∞
g(x)dx = −e−x1[0,∞)(x)|x=tx=−∞ = (1− e−t)1[0,∞)(t).

An analysis of the properties of the cumulative distribution functions presented above
supports the following theorem:

Theorem 1. The cumulative distribution function FX of a random variable X has the follo-
wing properties:

(i) FX is nondecreasing,
(ii) limt→∞ FX(t) = 1 and limt→−∞ FX(t) = 0,
(iii) FX is right-continuous.

What is more important, however, is the fact that the above theorem may be “inverted”:

Theorem 2. For any function F : R→ R satisfying the conditions (i)-(iii) above, there exists
a probability space (Ω,F ,P) and a random variable X : Ω→ R such that F is the cumulative
distribution function of X. Furthermore, the distribution of X is determined unequivocally.
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The implications of the above theorem are sound: a cumulative distribution function deter-
mines the distribution unequivocally, so all information about a variable must be “coded” in
the CDF. In other words, from a CDF we must be able to determine, for example, the set of
possible values, all the corresponding probabilities, whether the random variable is discrete
or continuous, etc.

Let us now look a bit more scrupulously at the properties of a CDF of a discrete random
variable. Let us assume that the random variable is concentrated on t1 < t2 < . . . < tn, with
P(X = ti) = pi, such that

∑n
i=1 pi = 1. Then, for all t < t1 we have FX(t) = 0; for all t  tn

we have FX(t) = 1; and for t ∈ [tj, tj+1) we have FX(t) =
∑j
i=1 pi.

In particular, we have that FX is continuous apart from the points ti, where it has jumps
(and is only right-continuous). For all t, however, there exist left-limits, which we will denote
by FX(t−) ≡ limx→t− FX(x). Obviously, for all t 6∈ {t1, t2, . . . , tn}, we have FX(t−) = FX(t)
and therefore

FX(t)− FX(t−) = 0 = P(X = t),

while for ti we have
FX(ti)− FX(ti−) = pi = P(X = ti).

This observation may be generalized:

Theorem 3. If FX is a cumulative distribution function of a random variable X, then for all
t ∈ R we have

FX(t−) = P(X < t)

and
FX(t)− FX(t−) = P(X = t).

In particular, if FX is continuous at point t, then P(X = t) = 0.

Note that the CDF of a continuous random variable must be continuous, since in this case for
all t we have P(X = t) = 0. Not all continuous cumulative distribution functions correspond
to continuous random variables, however. In order to obtain a CDF from a density function
we needed to integrate the density function. In order to calculate the density function from
the CDF, we will need to perform the inverse operation – i.e. differentiate. However, it is only
necessary that we are able to perform the differentiation of the CDF almost everywhere and
arbitrarily define the density function in the remaining points.

For example, let X be a random variable with an exponential distribution with parame-
ter λ = 1. We have defined this random variable as having a density function of gX(x) =
e−x1[0,∞)(x). We have calculated the CDF: FX(t) = (1 − e−t)1[0,∞)(t). If we wanted to cal-
culate the derivative of FX with respect to t, we would obtain gX – apart from point t = 0,
where the derivative does not exist.

The following theorem sums up these considerations.

Theorem 4. Let F be the cumulative distribution function of a random variable X.
1. If F is not continuous, then X does not have a continuous distribution (does not have a

density function).
2. Assume F is continuous. If F is differentiable (continuously) apart from a finite set of

points, then the function

g(t) =

F ′(t) if F ′(t) exists,
0 otherwise,

is a density function for X.

Note that in the above theorem, we may have assumed any values for g(t) at the points
where the derivative of F does not exist; sometimes it may be simpler to use a different
definition (perhaps to make the density one-sidedly continuous). We are welcome to do as we
please.

Examples:
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(1) Let X be a random variable with the following CDF

F (t) =


0 for t ∈ (−∞, 0),
t
2 for t ∈ [0, 2),
1 for t ∈ [2,∞).

F is differentiable everywhere apart from t = 0 and t = 2. We have F ′(t) = 0 for
t ∈ (−∞, 0) ∪ (2,∞) and F ′(t) = 1

2 for t ∈ (1, 2). Therefore,

g(t) =
1
2
· 1(0,2)(t)

Is a density function for X.
(2) There exist distributions which are neither discrete, nor continuous. If the distribution

µ is given by

µ(A) =
1
2
|A ∩ (0, 1)|+ 1

2
1A(2),

which is equivalent to the following experiment: toss a symmetric coin; in case of heads
draw a number uniformly from [0, 1]; in case of tails “draw” 2, then the CDF is equal
to:

F (t) =


0 if t ∈ (−∞, 0),
t
2 if t ∈ [0, 1),
1
2 if t ∈ [1, 2),
1 if t ∈ [2,∞).

This CDF is not continuous due to the “jump” in 2 (so X is not continuous), but it
is also not discrete (due to the systematic increase from 0 to 1).

Now we will look at transformations of random variables. We know that if X is a random
variable, and ϕ is a Borel function, then ϕ(X) is also a random variable. In the general case,
it is always possible to calculate the CDF of ϕ(X) if we know the CDF of X (although
sometimes, if ϕ is complicated, the calculations may be painstaking). However, if the function
ϕ is “well-behaved”, and X is a continuous variable, we can easily give a simple rule for
calculating the density function of ϕ(X), in the words of the following theorem:

Theorem 5. Assume X is a random variable with density f . If the values of X fall within
the interval (a, b) (with probability 1), and ϕ : (a, b) → R is C1 and ϕ′(x) 6= 0 for x ∈ (a, b),
then Y = ϕ(X) is continuous with a density function

g(y) = f(h(y))|h′(y)|1ϕ((a,b))(y),

where h(s) = ϕ−1(s).

Note: in the above theorem, a and b may be equal to infinity. This is just a simplifying
notation.

An example of application:

(1) Let X be a random variable with uniform distribution over (0, 4), and Y =
√
X.

Following the notation from the above theorem, we have f(x) = 1
41(0,4)(x), a = 0,

b = 4 and ϕ(x) =
√
x. We check that ϕ′(x) = 1

2
√
x
6= 0 for x ∈ (0, 4), so we may use

the theorem. We have ϕ(a, b) = (0, 2), h(y) = y2, h′(y) = 2y, so the density function
of Y is given by

g(y) =
1
4

1(0,4)(y2) · 2y · 1(0,2)(y) =
1
2
y · 1(0,2)(y).
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2. Quantiles

Sometimes we wish to compare different random variables (for example, the distributions
of wealth across inhabitants of different countries). In the general case, if the distributions
are very different, it may be impossible to formulate sensible comparisons based on the CDF/
density functions “as a whole”. In such cases, it may be worthwhile to “forget” some in-
formation and describe the distributions with simple parameters. The most commonly used
parameters in this case are the mean value and variance, which we will talk about during next
classes. Here we will describe a different class of parameters, directly linked to the CDFs, and
also commonly used in in this context – namely, quantiles. They are especially useful when
we need to characterize distributions with outlying (extreme) values (such as earnings).

Definition 2. Let X be a random variable and p ∈ [0, 1]. A quantile of rank p of the
variable X is any value xp, such that

P(X ¬ xp)  p

and
P(X  xp)  1− p.

Note that the first condition states that FX(xp)  p, and the second condition is equivalent
to 1− FX(xp−) = 1− FX(xp) + P(X = xp)  1− p.

The quantile of rank 12 is called a median, quantiles of rank 14 and 34 are called quartiles,
quantiles of rank i

10 are called deciles; we also may speak of percentiles etc.
Example:
(1) A standard normal variable has a (single) median, equal to 0. Also, for any p ∈ (0, 1),

there exists exactly one quantile of rank p, which can be determined by the equation
FX(xp) =

∫ xp
−∞

1√
2π
e−x

2/2dx = p.

(2) A random variable which assumes two values: 1 and -1 with probability 12 each has a
whole range of medians: each value from the segment [−1, 1] satisfies both conditions
for p = 1

2 . For p ∈ (0, 12), X has one quantile of rank p, namely −1, and for p ∈ (12 , 1),
one quantile of rank p, equal to 1. Quantiles of rank 0 are all values from the interval
(−∞,−1] and quantiles of rank 1 – all values from [1,∞).

In some cases, it may be necessary to define a single quantile of rank p for any value of
p (for example, when defining the quantile function). In this case, one usually assumes that
the (single) quantile of rank p is the smallest value of xp satisfying the two conditions in the
above definition.

Quantiles are widely used in statistics.
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