Probability Calculus 2021/2022

Problem set 4

1. Two dice were rolled. Let X denote the sum of points on the two dice. Calculate $\mathbb{P}(X \leqslant 3)$, $\mathbb{P}(X=7), \mathbb{P}(X>10.25), P(X \leqslant 1)$.
2. A die was rolled. Let X denote the number obtained, and $Y=7-X$. Check that X and Y have the same distribution.
3. Let k be an integer. Let X denote the number of the Bernoulli trial - in a series of Bernoulli trials with a probability of success p-where the k-th success appeared. Determine the distribution of X.
4. There are 10 balls in a box, bearing numbers from 1 to 10 . We randomly draw a ball 20 times with replacement. Let X denote the smallest number obtained. Find the distribution of X and X^{2}.
5. Let X be a random variable with a uniform distribution over the interval $[0,2]$. Find the density function and calculate $\mathbb{P}(X \in[1,3])$.
6. Let X be a random variable from an exponential distribution with parameter $\lambda=3$. Find
(a) $\mathbb{P}(X \in[3,4])$;
(b) the distribution of the variable $Y=\lfloor X\rfloor$ (largest previous integer of X).
7. Let X be a random variable from an exponential distribution with parameter $\lambda>0$, and let t and h be positive real numbers. Calculate $\mathbb{P}(X>t+h \mid X>h)$ and compare it with $\mathbb{P}(X>t)$.
8. Let X be a random variable with a density function equal to

$$
g(x)=C x^{-2} 1_{[2, \infty)}(x) .
$$

(a) Find C.
(b) Calculate $\mathbb{P}(X \in[1,12])$.

Some additional problems

Theory (you should know after the fourth lecture and before this class):

1. What is a random variable? What is the distribution of the random variable?
2. Define a discrete and a continuous distribution.
3. Define the binomial, geometric, Poisson and uniform distributions.

Problems (you should know how to solve after this class)
4. Let X be a random variable with a Poisson distribution with parameter 2. Calculate $\mathbb{P}(X=3)$ and $\mathbb{P}(X \leqslant 2)$.
5. Let X denote the number of points obtained in a die roll. Find the distribution of $Y=X^{2}$.
6. Let X be a random variable uniformly distributed over $[-5,8]$. Calculate $\mathbb{P}(X=-1)$ and $\mathbb{P}(X \leqslant 5)$.
7. Let X be a random variable with density

$$
g(x)=C x^{-3} 1_{[1,5]}(x)= \begin{cases}C x^{-3} & \text { for } 1 \leqslant x \leqslant 5, \\ 0 & \text { otherwise } .\end{cases}
$$

Find C and $\mathbb{P}\left(\frac{1}{X} \in\left[\frac{1}{2}, 3\right]\right)$.
8. Let X be a random variable from a geometric distribution with parameter p. let $k, l>0$ be integer numbers. Calculate $\mathbb{P}(X>k+l \mid X>k)$ and compare with $\mathbb{P}(X>l)$.

