Probability Calculus 2021/2022 Problem set 4

- 1. Two dice were rolled. Let X denote the sum of points on the two dice. Calculate $\mathbb{P}(X \leq 3)$, $\mathbb{P}(X = 7)$, $\mathbb{P}(X > 10.25)$, $P(X \leq 1)$.
- 2. A die was rolled. Let X denote the number obtained, and Y = 7 X. Check that X and Y have the same distribution.
- 3. Let k be an integer. Let X denote the number of the Bernoulli trial in a series of Bernoulli trials with a probability of success p where the k-th success appeared. Determine the distribution of X.
- 4. There are 10 balls in a box, bearing numbers from 1 to 10. We randomly draw a ball 20 times with replacement. Let X denote the smallest number obtained. Find the distribution of X and X^2 .
- 5. Let X be a random variable with a uniform distribution over the interval [0, 2]. Find the density function and calculate $\mathbb{P}(X \in [1, 3])$.
- 6. Let X be a random variable from an exponential distribution with parameter $\lambda = 3$. Find
 - (a) $\mathbb{P}(X \in [3, 4]);$
 - (b) the distribution of the variable $Y = \lfloor X \rfloor$ (largest previous integer of X).
- 7. Let X be a random variable from an exponential distribution with parameter $\lambda > 0$, and let t and h be positive real numbers. Calculate $\mathbb{P}(X > t+h|X > h)$ and compare it with $\mathbb{P}(X > t)$.
- 8. Let X be a random variable with a density function equal to

$$g(x) = Cx^{-2}1_{[2,\infty)}(x).$$

(a) Find C.

(b) Calculate $\mathbb{P}(X \in [1, 12])$.

Some additional problems

Theory (you should know after the fourth lecture and before this class):

1. What is a random variable? What is the distribution of the random variable?

2. Define a discrete and a continuous distribution.

3. Define the binomial, geometric, Poisson and uniform distributions.

Problems (you should know how to solve after this class)

4. Let X be a random variable with a Poisson distribution with parameter 2. Calculate $\mathbb{P}(X=3)$ and $\mathbb{P}(X \leq 2)$.

5. Let X denote the number of points obtained in a die roll. Find the distribution of $Y = X^2$.

6. Let X be a random variable uniformly distributed over [-5, 8]. Calculate $\mathbb{P}(X = -1)$ and $\mathbb{P}(X \leq 5).$

7. Let X be a random variable with density

$$g(x) = Cx^{-3} \mathbf{1}_{[1,5]}(x) = \begin{cases} Cx^{-3} & \text{for } 1 \le x \le 5, \\ 0 & \text{otherwise.} \end{cases}$$

Find C and $\mathbb{P}\left(\frac{1}{X} \in [\frac{1}{2}, 3]\right)$. 8. Let X be a random variable from a geometric distribution with parameter p. let k, l > 0 be integer numbers. Calculate $\mathbb{P}(X > k + l | X > k)$ and compare with $\mathbb{P}(X > l)$.