Probability Calculus Anna Janicka

lecture IV, 28.10.2021

RANDOM VARIABLES – INTRO:

Plan for today

- Poisson theorem
- Definition of the distribution of a random variable
- Description of the distribution of a random variable – examples
- □ Cumulative Distribution Function intro.

Poisson Theorem

1. Poisson Theorem

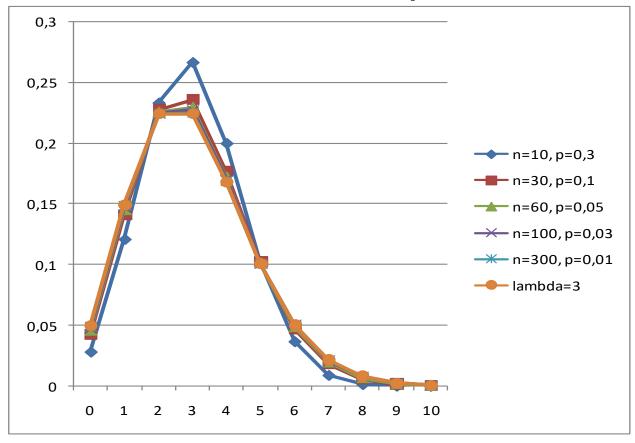
If
$$p_n \in [0, 1]$$
, $\lim_{n \to \infty} np_n = \lambda > 0$,
then for $k = 0, 1, 2, \dots$,
we have that
 $\lim_{n \to \infty} {n \choose k} p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$.

2. Assessment of approximation error

Let S_n denote the number of successes in a Bernoulli process with n trials and a probability of success in a single trial equal to p, and let $\lambda = np$. For any $A \subset \{0, 1, 2, ...\}$, we have $\left| \mathbb{P}(S_n \in A) - \sum_{k \in A} \frac{\lambda^k}{k!} e^{-\lambda} \right| \leq \frac{\lambda^2}{n}$.

Poisson Theorem – cont.

The Poisson and Bernoulli processes



Random variables – basics

- Motivation functions of the results of an experiment
- 2. Definition of a random variable

A real-valued random variable is any function $X: \Omega \to \mathbb{R}$, such that for all $a \in \mathbb{R}$ the set $X^{-1}((-\infty, a])$ is an event, i.e. $X^{-1}((-\infty, a]) \in \mathcal{F}$.

 $X^{-1}((-\infty, a]) = \{\omega \in \Omega : X(\omega) < a\}$

3. Examples

- number of heads
- sum of points on dice

Random variables – distribution

- 4. Functions of random variables
- Examples of descriptions of random variables.
- 6. Definition of a random v. **distribution** The probability distribution of a random variable X (real-valued) is the probability μ_X on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that $\mu_X(A) = \mathbb{P}(X \in A)$.
- 7. Different r.v. have the same distributions

Random variables – examples

- 8. Examples of random variables
 - die roll
 - discrete distributions
 - Binomial distribution
 - Geometric distribution
 - Poisson distribution
 - uniform distribution over an interval: a continuous distribution
 - another continuous distribution

Continuous random variables

Definition of a continuous random variable and a density function

A random variable X has a **continuous distribution**, if there exists a function $g : \mathbb{R} \to \mathbb{R}_+$, such that for any set $A \in \mathcal{B}(\mathbb{R})$, $\mu_X(A) = \mathbb{P}(X \in A) = \int_A g(x) dx$. g is called the **probability density function of** X.

- 10. The properties of density functions
 - nonnegative
 - normalized



Random variable examples – cont.

- More examples of continuous random variables
 - uniform distribution
 - exponential distribution
 - standard normal distribution
 - general normal distribution
 - (Dirac delta)

Random variables – the CDF

1. The definition of a CDF

The Cumulative distribution function

of a random variable
$$X : \Omega \to \mathbb{R}$$

is a function $F_X : \mathbb{R} \to [0, 1]$, such that
 $F_X(t) = \mathbb{P}(X \leq t)$.

depends on the distribution only!

→ CDF of distribution

Random variables – the CDF

2. Examples of CDFs

- Dirac delta
- Two-point distribution discrete distribution
- Exponential distribution
- Normal distribution no simple form...

CDFs

3. Properties of the CDF

The cumulative distribution function F_X of a random variable X has the following properties: (i) F_X is nondecreasing, (ii) $\lim_{t\to\infty} F_X(t) = 1$ and $\lim_{t\to-\infty} F_X(t) = 0,$ (iii) F_X is right-continuous.

4. CDF \rightarrow distribution

For any function $F: \mathbb{R} \to \mathbb{R}$ satisfying the conditions (i)-(iii) above, there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $X:\Omega\to\mathbb{R}$ such that F is the CDF of X. Furthermore, the distribution of X

 $\langle \rangle$ is determined unequivocally.

