Probability Calculus Anna Janicka

lecture II, 14.10.2021

INTRODUCTION TO PROBABILITY - CONT. CONDITIONAL PROBABILITY

Plan for today

1. Sample spaces and basic properties of probability - cont.
2. Conditional probability

REMINDER:
Probability formally - Kolmogorov Axioms
\square For a given (Ω, \mathscr{F}) we define probability as a function satisfying 3 conditions

$$
\begin{aligned}
\text { (i) } & 0 \leq \mathbb{P}(A) \leq 1 \\
\text { (ii) } & \mathbb{P}(\Omega)=1, \\
\text { (iii) } & \text { if } A_{1}, A_{2}, \ldots \in \mathcal{F} \text { are pairwise disjoint } \\
& \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right) .
\end{aligned}
$$

\square Probability space $(\Omega, \mathcal{F}, \mathrm{P})$

Examples

1. Symmetric coin toss, asymmetric coin toss
2. Dice rolling
3. Classic scheme (simple probability)
4. Drawing numbers (Eurojackpot)
5. Geometric probability
6. Coin toss until first heads

Basic properties of probability

\square Theorem 1 (arithmetics)

Theorem 1. Let $A, B, A_{1}, A_{2}, \ldots \in \mathcal{F}$. Then
(i) $\mathbb{P}(\emptyset)=0$,
(ii) If $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise disjoint, then $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$.
(iii) $\mathbb{P}\left(A^{\prime}\right)=1-\mathbb{P}(A)$.
(iv) If $A \subseteq B$, then $\mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$.
(v) If $A \subseteq B$, then $\mathbb{P}(A) \leqslant \mathbb{P}(B)$.
(vi) $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.
(vii) $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leqslant \sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$.

Basic properties of probability - cont.

\square Theorem 2 (inclusion-exclusion principle)

If $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$, then

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)= & \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\ldots \\
& +(-1)^{n+1} \mathbb{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)
\end{aligned}
$$

Further properties of probability

\square Definitions of contracting and expanding sets

Assume A_{1}, A_{2}, \ldots is a sequence of events.
We will call this sequence expanding if
$A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$,
and contracting if
$A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$

Further properties of probability - cont.

\square Theorem: Rule of Continuity

Assume that $\left(A_{n}\right)_{n=1}^{\infty}$ is a sequence of events.
(i) If the series is expanding, then
$\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$.
(ii) If the series is contracting, then
$\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)$.

Conditional probability

1. Intuition

■ New product marketing

- Results of dice rolls when only the sum is known

2. Definition

Let X and Y be events, such that $\mathbb{P}(Y)>0$. By a conditional probability of event X under the condition Y we will understand

$$
\mathbb{P}(X \mid Y)=\frac{\mathbb{P}(X \cap Y)}{\mathbb{P}(Y)} .
$$

Conditional probability - cont.

3. Conditional probability is probability

4. Theorem (Chain rule)

For any sequence of events A_{1}, \ldots, A_{n}, such that $\mathbb{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)>0$, we have

$$
\mathbb{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)=
$$

$\mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2} \mid A_{1}\right) \cdot \mathbb{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots \mathbb{P}\left(A_{n} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)$.

Conditional probability - cont. (2)

5. Example (Succesive draws)
6. Definition of partition

Any family of events $\left\{H_{i}\right\}_{i \in I}$, such that $H_{i} \cap H_{j}=\emptyset$ for $i \neq j$ and $\bigcup_{i \in I} H_{i}=\Omega$ is called a partition of the sample space Ω.

A finite, countable partition

Conditional probability - cont. (3)

7. Theorem (Law of Total Probability)

For any finite partition $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$
of the sample space Ω, such that
all H_{i} have positive probability,
and for any event A, we have
$\mathbb{P}(A)=\sum_{i=1}^{n} \mathbb{P}\left(A \mid H_{i}\right) \cdot \mathbb{P}\left(H_{i}\right)$.
8. Examples

■ Phone manufacturer

- Balls in a box

Conditionat probability - cont. (4)

9. Theorem (Bayes' Rule)

Let $\left\{H_{i}\right\}_{i \in I}$ be a countable (finite or infinite) partition of Ω into sets of positive probability. For any event A of positive probability, we have $\mathbb{P}\left(H_{j} \mid A\right)=\frac{\mathbb{P}\left(A \mid H_{j}\right) \mathbb{P}\left(H_{j}\right)}{\sum_{i \in I} \mathbb{P}\left(A \mid H_{i}\right) \mathbb{P}\left(H_{i}\right)}$.
10. Examples

2
Faculty of Economic Sciences

