Probability Calculus

Anna Janicka

lecture II, 14.10.2021

INTRODUCTION TO PROBABILITY – CONT. CONDITIONAL PROBABILITY

Plan for today

- Sample spaces and basic properties of probability – cont.
- 2. Conditional probability

REMINDER: Probability formally - Kolmogorov Axioms

 \Box For a given (Ω , \mathcal{F}) we define probability as a function satisfying 3 conditions

(i)
$$0 \le \mathbb{P}(A) \le 1$$

(*ii*)
$$\mathbb{P}(\Omega) = 1$$
,

(*iii*) if $A_1, A_2, \ldots \in \mathcal{F}$ are pairwise disjoint

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

\square Probability space ($\Omega, \mathcal{F}, \mathbb{P}$)

Examples

- 1. Symmetric coin toss, asymmetric coin toss
- 2. Dice rolling
- **3.** Classic scheme (simple probability)
- 4. Drawing numbers (Eurojackpot)
- 5. Geometric probability
- 6. Coin toss until first heads

□ Theorem 1 (arithmetics)

Theorem 1. Let A, B, A₁, A₂, ... $\in \mathcal{F}$. Then (i) $\mathbb{P}(\emptyset) = 0$, (ii) If A₁, A₂, ..., A_n are pairwise disjoint, then $\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mathbb{P}(A_i)$. (iii) $\mathbb{P}(A') = 1 - \mathbb{P}(A)$. (iv) If $A \subseteq B$, then $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$. (v) If $A \subseteq B$, then $\mathbb{P}(A) \leqslant \mathbb{P}(B)$. (vi) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$. (vii) $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Theorem 2 (inclusion-exclusion principle)

If $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then

$$\mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \ldots + (-1)^{n+1} \mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n)$$

Further properties of probability

Definitions of contracting and expanding sets

Assume A_1, A_2, \ldots is a sequence of events. We will call this sequence **expanding** if $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$, and **contracting** if $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$

Theorem: Rule of Continuity

Assume that $(A_n)_{n=1}^{\infty}$ is a sequence of events. (i) If the series is expanding, then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n=1}^{\infty} A_n)$. (ii) If the series is contracting, then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcap_{n=1}^{\infty} A_n)$.

Conditional probability

1. Intuition

- New product marketing
- Results of dice rolls when only the sum is known
- 2. Definition

Let X and Y be events, such that $\mathbb{P}(Y) > 0$. By a **conditional probability** of event X under the condition Y we will understand

$$\mathbb{P}(X|Y) = \frac{\mathbb{P}(X \cap Y)}{\mathbb{P}(Y)}.$$

Conditional probability is probability Theorem (Chain rule)

For any sequence of events A_1, \ldots, A_n , such that $\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_{n-1}) > 0$, we have

 $\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_n) =$

 $\mathbb{P}(A_1) \cdot \mathbb{P}(A_2|A_1) \cdot \mathbb{P}(A_3|A_1 \cap A_2) \cdots \mathbb{P}(A_n|A_1 \cap A_2 \cap \ldots \cap A_{n-1}).$

Conditional probability – cont. (2)

- 5. Example (Succesive draws)
- 6. Definition of partition

Any family of events $\{H_i\}_{i\in I}$, such that $H_i \cap H_j = \emptyset$ for $i \neq j$ and $\bigcup_{i\in I} H_i = \Omega$ is called a **partition** of the sample space Ω .

A finite, countable partition

7. Theorem (Law of Total Probability)

For any finite partition $\{H_1, H_2, \ldots, H_n\}$ of the sample space Ω , such that all H_i have positive probability, and for any event A, we have $\mathbb{P}(A) = \sum_{i=1}^n \mathbb{P}(A|H_i) \cdot \mathbb{P}(H_i).$

8. Examples

- Phone manufacturer
 - Balls in a box

9. Theorem (Bayes' Rule)

Let $\{H_i\}_{i \in I}$ be a countable (finite or infinite) partition of Ω into sets of positive probability. For any event A of positive probability, we have $\mathbb{P}(H_j|A) = \frac{\mathbb{P}(A|H_j)\mathbb{P}(H_j)}{\sum_{i \in I} \mathbb{P}(A|H_i)\mathbb{P}(H_i)}.$

10. Examples

