
Probability Calculus 2021/2022
Lecture 1

1. Some Historical Remarks

Probability Calculus – in its present form – dates to the 1930s and it is thus a fairly new
discipline of Mathematics. It would not be true to say, however, that probabilistic problems
were strange do Mathematicians earlier. Probabilistic considerations may be traced back to
the 17th century (some mathematical historians trace even further), and especially to Pascal
and Fermat, whose correspondence pertaining to several probabilistic problems (among them,
the paradox of Chevalier de Méré, and the problem of the division of stakes in an unfinished
game) is now considered “classic”. It would not be inappropriate to say that the foundations
of probability theory lie in hazard games, as it is precisely the problems posed by those who
“practiced” random games professionally and came upon properties they could not explain
themselves that gave rise to the evolution of the discipline. Ad-hoc solutions to specific pro-
blems were provided throughout the centuries, but it is the work of Kolmogorov (published
in 1933) which finally provided the foundations which permitted to formalize the problems
posed by researchers and provide unambiguous solutions to many of them.

2. Basic combinatorics

In probability considerations, and especially in the classic scheme, it is often useful to refer
to several combinatorial models. The most important are:

Variations with repetitions. The number of k-element sequences of elements of a given
set A, if repetitions are allowed, is equal to n · n · . . . · n = nk, where by n we denote the
number of elements of A.

Variations without repetitions. The number of k-element sequences of elements of a
given set A, if repetitions are not allowed, is equal to n · (n−1) · . . . · (n−k+ 1) = n!/(n−k)!,
where again by n we denote the number of elements of A. The formula makes sense for k ¬ n;
if k > n, the number is 0.

Permutations. The number of sequences of all elements of a given set A (consisting of n
elements) is equal to n!. A special case of variations without repetitions.

Combinations. The number of k-element subsets of a given set A (consisting of n elements)
is equal to

(
n
k

)
, where (

n

k

)
=


n!

k!(n−k)! if 0 ¬ k ¬ n,

0 otherwise

3. Basic Definitions and Notation

If we wish to apply mathematical considerations to real-life problems, we need a notation
to capture the outcomes of random experiments. For a given experiment, we will therefore
need:

• a way to describe a single experiment outcome. We will usually denote a specific
outcome by ω and call it an elementary event.
• a set of all possible (elementary) outcomes. We will denote this set of all possible ωs

by Ω and call it a sample space.
• an event A, B, C, etc. – a subset of the sample space Ω, i.e. a set of possible outcomes

which, for some reason or another, we wish to group together.
Throughout the lecture, we will assume the following notation:
If ω - is an elementary event and A an event, then
- if ω ∈ A, we will say A occurred;
- if ω /∈ A, we will say A did not occur, or that the complement of A, which we define as

A′ = Ω \ A, occurred.
- Ω is a certain event,
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- ∅ is an impossible event,
- A ∩B - both A and B occurred,
- A ∩B = ∅ - A and B are disjoint,
- A ∪B - A or B occurred,
- A \B = A ∩B′ - A occurred and B did not occurr
- A ⊆ B - A implies B.
Let’s see how this notation works in practice for some basic experiments.
(1) We flip a coin. There are two possible outcomes: heads and tails, so we may define

Ω = {H,T}. |Ω| = 2.
(2) We roll a cubic die. Then, we may define Ω = {1, 2, 3, 4, 5, 6}. |Ω| = 6.
(3) We roll a pair of cubic dice. Then, if we take into account the results on both dice,

Ω = {(x, y) : x, y ∈ {1, 2, 3, 4, 5, 6}}. If, however, we look at the sum of points obtained,
we have Ω = {2, 3, . . . , 12}. Note that this latter case is different than the previous
cases in that the elementary events are not equally probable (for now, intuitively).

(4) We draw 13 cards from a deck of 52 cards. The outcome is a 13-element subset of the
set of cards, thus Ω is a set of 13-element combinations and |Ω| =

(
52
13

)
. In this case,

we assume the order of the cards is not important.
(5) We toss a coin until we obtain heads. The outcome may be represented by the number

of tosses, in which case we have Ω = {1, 2, 3, . . .}. This is an example of an infinite
sample space.

(6) We throw a needle on a table (Buffon’s needle). We measure the angle between the
needle and a given edge of the table. The outcome may be represented by a number
from the range [0, 2π), and thus Ω = [0, 2π). This type of experiment is what we call
a continuous experiment.

4. σ-algebras

We may not be interested in a particular event-outcome of a random experiment, but
rather whether or not this element is a part of a given subset. For example, if we had a wish
to determine who pays for the meal in a restaurant by flipping a coin, but we did not have
a coin but had a die instead, we could establish that person A pays if the result is {1, 2, 3},
and person B pays if the result is {4, 5, 6}. Then, we are only interested in who pays for the
meal, and not in the particular result of the roll (for example, we are interested whether A
pays meaning the result was in the set {1, 2, 3} and not whether the result was specifically 1
or 2 or 3).

In many simple cases, we may be interested in all possible results (the set of all possible
results, i.e. the set of all subsets of Ω, is denoted 2Ω). In other cases (for example in continuous
experiments), it may simply be impossible to distinguish (or rather measure) all possible sets
of outcomes. Given the sample space Ω, we will need to describe the set of events we wish
to be able to measure. This set, if it is to behave reasonably, needs to be closed to sums,
intersections and complements. If we allow infinite sums (and intersections), we come to the
definition of a σ-algebra.

Definition 1. A family F of subsets of Ω is called a σ-algebra, if

(i) ∅ ∈ F ,
(ii) A ∈ F ⇒ A′ ∈ F ,

(iii) A1, A2, . . . ∈ F ⇒
∞⋃
n=1

An ∈ F .

5. Probability and a Probability Space

We all have an intuitive understanding of probability, and this intuitive understanding is
that the probability resembles the fraction of favorable events (in a large sample). For example,
if we toss a symmetric coin multiple times, we expect that, on average, in a long series of



tosses, we will obtain more or less the same fraction of heads and tails. More generally, for a
given sample space Ω and an event A, we expect that the proportion of event outcomes where
A occurred should more or less resemble the probability that A will occur. Formally, if

ρn(A) =
number of occurrences of A

n
,

then we expect that the limit of ρn(A) as n approaches infinity should be equal to the proba-
bility of A. However, we do not have the tools yet to prove that such a limit exists, nor that
it is equal to the probability we are looking for. We may, on the other hand, “reverse” the
question and formally define probability as a function that satisfies the basic properties that
the frequencies have. These most basic properties are the following:

(i) 0 ¬ ρn(A) ¬ 1,

(ii) ρn(Ω) = 1,

(iii) A ∩B = ∅ ⇒ ρn(A ∪B) = ρn(A) + ρn(B).

We will modify the third property to fit the definition of the σ-algebra set of interesting events,
which includes infinite sums, to obtain the following definition of a probability measure
P : F → [0, 1]:

(i) 0 ¬ P(A) ¬ 1,

(ii) P(Ω) = 1,

(iii) if A1, A2, . . . ∈ F are pairwise disjoint, then P
( ∞⋃
n=1

An

)
=
∞∑
n=1

P(An).

The triple (Ω,F ,P) is called a probability space or a probability triple. Note that all
three elements of this triple are necessary to formally describe the random experiment we
wish to formalize; a change in F results in the need to change P, and for a given set of Ω and
F we may define different probability measures. The choice of the model that best fits reality
is sometimes not an easy one.

(1) A coin toss. Ω = {H,T}. We can easily use the complete set of subsets for our
σ-algebra: F = 2Ω = {{H}, {T},Ω, ∅}. If the coin is symmetric, we may assume
P({H}) = 1

2 , P({T}) = 1
2 , P(Ω) = 1, P(∅) = 0. If we wish to account for an asymme-

tric coin, we may put P({H}) = p, P({T}) = 1 − p, P(Ω) = 1, P(∅) = 0, for a given
value of p ∈ [0, 1] \ 1

2 .
(2) A die roll. Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω, P(ω) = 1/6, and as can easily be shown,

therefore P(A) = |A|/6 for any subset A of Ω.
(3) More generally: The classical probability scheme. If Ω is a finite set, we may

always put F = 2Ω. If our experiment is such that all elementary events are equally
probable (and thus the probability of obtaining a specific result is always 1

n
, where n

is the number of elements of Ω), we have, for A ∈ F ,

P(A) =
|A|
|Ω|

.

(4) From a deck of cards we are randomly assigned a set of 13. We have seen above that Ω
is the set of all 13-element combinations, and |Ω| =

(
52
13

)
. Since, intuitively, all possible

outcomes are equally probable, we may use the classical probability scheme. If, for
example, we wish to determine the probability of obtaining four aces and four kings
among the thirteen cards, we have that |A| =

(
44
5

)
, which gives us P(A) =

(
44
5

)
/
(

52
13

)
.

The axiomatic definition of Probability introduced in this section fulfills a set of intuitive
properties.



Theorem 1. Let A, B, A1, A2, . . . ∈ F . Then
(i) P(∅) = 0,

(ii) If A1, A2, . . . , An are pairwise disjoint, then P
(
n⋃
i=1

Ai

)
=
n∑
i=1

P(Ai).

(iii) P(A′) = 1− P(A).

(iv) If A ⊆ B, then P(B \ A) = P(B)− P(A).

(v) If A ⊆ B, then P(A) ¬ P(B).

(vi) P(A ∪B) = P(A) + P(B)− P(A ∩B).

(vii) P
( ∞⋃
i=1

Ai

)
¬
∞∑
i=1

P(Ai).

Theorem 2 (Inclusion-exclusion principle). If A1, A2, . . . , An ∈ F , then

P(A1 ∪ A2 ∪ . . . ∪ An) =
n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩ Aj) + . . .

+ (−1)n+1P(A1 ∩ A2 ∩ . . . ∩ An).

These properties not only facilitate the calculation of specific probabilities, but also permit
us to define probability on the set of elementary events only – the probability of all other
events is then determined unambiguously. For example,

(5) If Ω = {ω1, ω2, . . . , ωn, . . .} is a countable (finite or infinite) set, we can define the
probability function using a set of weights assigned to specific values of ωs. Formally,
let p1, p2, . . . be a series of nonnegative numbers, such that their sum is equal to 1. We
may then define F = 2Ω, and P({ωi}) = pi, i = 1, 2, . . .. Then, for all A ∈ F , we have

P(A) =
∑
i

1A(ωi) · pi,

where 1A(x) is an indicator function of the set A, namely 1A(x) =

1 if x ∈ A,
0 if x /∈ A.


