Probability Calculus 2021/2022, Homework 2 (two problems)

Name and Surname Student's number \qquad

In the problems below, please use the following: as k - the sum of digits in your student's number; as m - the sum of the two largest digits in your student's number; and as n - the smallest digit in your student's number plus 1. For example, if an index number is 609999: $k=42, m=18, n=1$.
Please write down the solutions (transformations, substitutions etc.), and additionally provide the final answer in the space specified (the answer should be a number in decimal notation, rounded to four digits).
3. There are $k(m+1)+2(n+5)(m+1)$ workers employed in company C_{1}, of which $k(m+1)$ have been vaccinated against COVID-19 and the rest have not been vaccinated, while in company C_{2} there are $6 m k$ vaccinated workers and a certain amount who were not vaccinated. A sanitary inspector performs an inspection in the following way: 1) she selects a company for inspection, with company C_{1} chosen with probability n / k, and company C_{2} chosen with probability $1-n / k ; 2$) she randomly selects an employee from the selected company. We know that the events: $A=\{$ company C_{1} was chosen $\}$ and $B=\{$ the selected employee is vaccinated against COVID-19\} are independent. How many non-vaccinated workers are there in company C_{2} ?

ANSWER: \square
Solution:
4. Two student groups: G_{1} and G_{2}, each having a limit of 10 participants, are opened for a course in probability calculus. There will be 20 students enrolling for the subject. Upon registration, each student will specify (independently from other students) which group she wishes to attend; the request will be fulfilled immediately, if only there are free places in the group specified. Based on data for previous years, the Dean's office predicts that group G_{1} will be preferred with probability m / k, and grup G_{2} will be chosen with probability $1-m / k$. Calculate the probability that when one of the groups becomes full, there will be $n+2$ free places remaining in the other group.
\square
Solution:

