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Plan for Today

1. Bayesian Statistics

◼ a priori and a posteriori distributions

◼ Bayesian estimation:

 Maximum a posteriori probability (MAP)

 Bayes Estimator

2. Caution!



Bayesian Statistics vs. traditional statistics

Frequentist: unknown parameters are given 

(fixed), observed data are random

Bayesian: observed data are given (fixed), 

parameters are random



Bayesian Statistics

Our knowledge about the unknown 

parameters is described by means of 

probability distributions, and additional 

knowledge may affect our description.

Knowledge:

▪ general

▪ specific

Example: coin toss



Bayesian Model

 X1, ..., Xn come from distribution P , with 

density f (x) – conditional density given a 

specific value of  (likelihood function).

 P – family of probability distributions P , 

indexed by the parameter 

 General knowledge: distribution  over the 

parameter space , given by () – the so-

called a priori/prior distribution of , 

 ~ 



Bayesian Model – cont. 

Additional knowledge (specific, contextual): 

based on observation. We have a joint 

distribution of observations and :

on this basis we can derive the conditional 

distribution of  (given the observed data)

where

is a marginal distribution for the obs.

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜃) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)

𝜋(𝜃|𝑥1, . . . , 𝑥𝑛) =
𝑓(𝑥1, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)

𝑚(𝑥1, . . . , 𝑥𝑛)
,

𝑚(𝑥1, . . . , 𝑥𝑛) = න
Θ

𝑓( 𝑥1, . . . , 𝑥𝑛|𝜃)𝜋(𝜃)𝑑𝜃



Bayesian Model – a posteriori distribution

is called the a posteriori/ 

posterior distribution, denoted x

The posterior distribution reflects all 

knowledge: general (initial) and specific 

(based on the observed data). 

Grounds for Bayesian inference and 

modeling

𝜋(𝜃|𝑥1, . . . , 𝑥𝑛)



Prior and posterior distributions: examples

1.Let X1, ..., Xn be IID r.v. from a 0-1 distr. with 

prob. of success ; let

for (0,1)

where

and

then the posterior distribution: 

conjugate prior for Bernoulli distr.

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

𝐵(𝛼, 𝛽) = න
0

1

𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢 =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)

Γ(𝛼) = න
0

∞

𝑢𝛼−1 exp( − 𝑢)𝑑𝑢 = (𝛼 − 1)Γ(𝛼 − 1)

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

Beta(,) 

distr with 

mean

= /(+ )



For a Beta (1,1) prior and data: n=10 and 1, 5, 9 successes



For a Beta (1,1) prior and data: n=100 and 10, 50, 90 

successes



For a Beta (10,10) prior and data: n=10 and 1, 5, 9 successes



For a Beta (10,10) prior and data: n=100 and 10, 50, 90 

successes



For a Beta (1,5) prior and data: n=10 and 1, 5, 9 successes



For a Beta (1,5) prior and data: n=100 and 10, 50, 90 

successes



Prior and posterior distributions: examples (2) 

2. Let X1, ..., Xn be IID r.v. from N(, 2), and 

2 known;  ~N(m,  2) for m,  known.

Then the posterior distribution for : 

conjugate prior for a normal distr.
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Bayesian Statistics

Based on the Bayes approach, we can

 find estimates

 find an equivalent of confidence intervals

 verify hypotheses

 make predictions



Bayesian Most Probabale (BMP) / Maximum a 

posteriori Probability (MAP) estimate

Similar to ML estimation: the argument which 

maximizes the posterior distribution:

i.e. 

𝜋( መ𝜃𝐵𝑀𝑃|𝑥1, . . . , 𝑥𝑛) = max𝜃 𝜋 (𝜃|𝑥1, . . . , 𝑥𝑛)

𝐵𝑀𝑃(𝜃) = መ𝜃𝐵𝑀𝑃 = argmax𝜃 𝜋 (𝜃|𝑥1, . . . , 𝑥𝑛)



BMP: examples

1. Let X1, ..., Xn be IID r.v. from a Bernoulli distr. with 

prob. of success  ; for (0,1)

We know the posterior distribution: 

we have max for

i.e. for 5 successes in 10 trials for a prior U(0,1) (i.e. Beta(1,1) distr.), we 

have BMP()=5/10 = ½

and for 9 successes in 10 trials for the same prior distr., we have 

BMP( )=9/10

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

Beta(,) distr; the 

mode of this distr

= (-1)/(+ -2)

for >1, >1

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

𝐵𝑀𝑃(𝜃) =
σ𝑖=1
𝑛 𝑥𝑖 + 𝛼 − 1

𝑛 + 𝛽 + 𝛼 − 2



BMP: examples (2) 

2. Let X1, ..., Xn be IID r.v. from N(, 2), with 2

known;  ~N(m,  2) for m,  known.

Then the posterior distr. for  : 

so

i.e. if we have a sample of 5 obs 1.2; 1.7 ; 1.9 ; 2.1; 3.1 from 

distr. N(, 4) and the prior distr is  ~N(1, 1), then 

BMP() = (5 /4 * 2 + 1)/(5/4 + 1) = 14/9  1.56

and if the prior distr were  ~N(3, 1), then 

BMP() = (5 /4 * 2 + 1*3)/(5/4 + 1) = 22/9  2.44
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Bayes Estimator

An estimation rule which minimizes the 

posterior expected value of a loss function

L(, a) – loss function, depends on the true 

value of  and the decision a. 

e.g. if we want to estimate g( ):

L(, a) = (g() - a)2 – quadratic loss function

L(, a) = |g() - a| – module loss function



Bayes Estimator – cont.

We can also define the accuracy of an 

estimate for a given loss function :

(the average loss of the estimator for a given prior 

distribution and data, i.e. for a specific posterior 

distribution)

𝑎𝑐𝑐(Π, ො𝑔(𝑥)) = 𝐸 𝐿(𝜃, ො𝑔(𝑥))|𝑋 = 𝑥 = න
Θ

𝐿(𝜃, ො𝑔(𝑥))𝜋(𝜃|𝑥)𝑑𝜃



Bayes Estimator – cont. (2)

The Bayes Estimator for a given loss 

function L(, a) is such that

For a quadratic loss function ( – a)2:

For a module loss function | – a|2:

ො𝑔𝐵

∀𝑥 𝑎𝑐𝑐(Π, ො𝑔𝐵(𝑥)) = min𝑎 𝑎 𝑐𝑐(Π, 𝑎)

መ𝜃𝐵 = 𝐸(𝜃|𝑋 = 𝑥) = 𝐸(Π𝑥)

መ𝜃𝐵 = 𝑀𝑒𝑑(Π𝑥)

more generally: E(g()|x)



Bayes Estimator: Example (1)

1. Let X1, ..., Xn be IID r.v. from a Bernoulli distr. with 

prob. of success  ; for (0,1)

We know the posterior distribution: 

so the Bayes Estimator is

i.e. for 5 successes in 10 trials for a prior U(0,1) (i.e. Beta(1,1) distr.), we 

have     =6/12 = ½

and for 9 successes in 10 trials for the same prior distr., we have 

=10/12 = 5/6

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

Beta(,) distr with 

mean

= /(+ )

𝜃𝐵 =
σ𝑖=1
𝑛 𝑥𝑖 + 𝛼

𝑛 + 𝛽 + 𝛼

መ𝜃𝐵

መ𝜃𝐵



BMP: examples

1. Let X1, ..., Xn be IID r.v. from a Bernoulli distr. with 

prob. of success  ; for (0,1)

We know the poster distribution: 

we have max for

i.e. for 5 successes in 10 trials for a prior U(0,1) (i.e. Beta(1,1) distr.), we 

have BMP()=5/10 = ½

and for 9 successes in 10 trials for the same prior distr., we have 

BMP( )=9/10

𝜋(𝜃) =
𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐵(𝛼, 𝛽)

Beta(,) distr; the 

mode of this distr

= (-1)/(+ -2)

for >1, >1

Beta(

𝑖=1

𝑛

𝑥𝑖 + 𝛼, 𝑛 −

𝑖=1

𝑛

𝑥𝑖 + 𝛽)

𝐵𝑀𝑃(𝜃) =
σ𝑖=1
𝑛 𝑥𝑖 + 𝛼 − 1

𝑛 + 𝛽 + 𝛼 − 2



Bayes Estimator: examples (2) 

2. Let X1, ..., Xn be IID r.v. from N(, 2), with 2

known;  ~N(m,  2) for m,  known.

Then the a posteriori distr for  : 

so

i.e. if we have sa sample of 5 obs 1.2; 1.7 ; 1.9 ; 2.1; 3.1 from 

distr. N(, 4) and the prior distr is  ~N(1, 1), then 

= (5 /4 * 2 + 1)/(5/4 + 1) = 14/9  1.56

and if the prior distr were  ~N(3, 1), then 

= (5 /4 * 2 + 1*3)/(5/4 + 1) = 22/9  2.44
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BMP: examples (2) 

2. Let X1, ..., Xn be IID r.v. from N(, 2), with 2

known;  ~N(m,  2) for m,  known.

Then the a posteriori distr for  : 

so

i.e. if we have sa sample of 5 obs 1.2; 1.7 ; 1.9 ; 2.1; 3.1 from 

distr. N(, 4) and the prior distr is  ~N(1, 1), then 

BMP() = (5 /4 * 2 + 1)/(5/4 + 1) = 14/9  1.56

and if the prior distr were  ~N(3, 1), then 

BMP() = (5 /4 * 2 + 1*3)/(5/4 + 1) = 22/9  2.44
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Caution!

1. Tests should be designed BEFORE we 

start examining the data

2. The only way to increase power and 

improve significance level simultaneously 

is by collecting more observations 

(frequently not possible if we work on 

existing data).

3. Significant p-value does not mean effect is

important/sizeable.

4. P-values in repeated samples



P-values in repeated samples

We examine if a new training has effect. The null hypothesis 

is that the training has no effect, and the alternative 

hypothesis is that it has effect. We use a 5% significance

level for the test.

 A randomly selected school has completed this training, 

and after completion the statistical test returns a P-value 

equal to 4%. 

 25 different schools have completed this training. At one 

of the schools the test returned a P-value of 4%. 


