Mathematical Statistics

Anna Janicka

Lecture XIV, 7.06.2021

Bayesian Statistics

SOME CONCLUDING REMARKS

Plan for Today

1. Bayesian Statistics

- a priori and a posteriori distributions
- Bayesian estimation:
\square Maximum a posteriori probability (MAP)
\square Bayes Estimator

2. Caution!

Bayesian Statistics vs. traditional statistics

Frequentist: unknown parameters are given (fixed), observed data are random

Bayesian: observed data are given (fixed), parameters are random

Bayesian Statistics

Our knowledge about the unknown parameters is described by means of probability distributions, and additional knowledge may affect our description. Knowledge:

- general
- specific

Example: coin toss

Bayesian Model

$\square X_{1}, \ldots, X_{n}$ come from distribution P_{θ}, with density $f_{\theta}(\mathbf{x})$ - conditional density given a specific value of θ (likelihood function).
$\square \mathscr{P}$ - family of probability distributions P_{θ}, indexed by the parameter $\theta \in \Theta$
\square General knowledge: distribution Π over the parameter space Θ, given by $\pi(\theta)$ - the socalled a priori/prior distribution of θ,
$\theta \sim \Pi$

Bayesian Model - cont.

Additional knowledge (specific, contextual): based on observation. We have a joint distribution of observations and θ :

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}, \theta\right)=f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) \pi(\theta)
$$

on this basis we can derive the conditional distribution of θ (given the observed data)

$$
\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{1}, \ldots, x_{n} \mid \theta\right) \pi(\theta)}{m\left(x_{1}, \ldots, x_{n}\right)}
$$

where

$$
m\left(x_{1}, \ldots, x_{n}\right)=\int_{\Theta} f\left(x_{1}, \ldots, x_{n} \mid \theta\right) \pi(\theta) d \theta
$$ is a marginal distribution for the obs.

Bayesian Model - a posteriori distribution

$\pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ is called the a posteriori/
posterior distribution, denoted Π_{x}
The posterior distribution reflects all knowledge: general (initial) and specific (based on the observed data).

Grounds for Bayesian inference and modeling

Prior and posterior distributions: examples

1.Let X_{1}, \ldots, X_{n} be IID r.v. from a 0-1 distr. with prob. of success θ; let

$$
\pi(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
$$

Where $B(\alpha, \beta)=\int_{0}^{1} u^{\alpha-1}(1-u)^{\beta-1} d u=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$
and

$$
\Gamma(\alpha)=\int_{0}^{\infty} u^{\alpha-1} \exp (-u) d u=(\alpha-1) \Gamma(\alpha-1)
$$

then the posterior distribution:

$$
\operatorname{Beta}\left(\sum_{i=1}^{n} x_{i}+\alpha, n-\sum_{i=1}^{n} x_{i}+\beta\right)
$$

For a Beta (1,1) prior and data: $\mathrm{n}=10$ and $1,5,9$ successes

For a Beta (1,1) prior and data: $\mathrm{n}=100$ and 10, 50, 90 successes

For a Beta $(10,10)$ prior and data: $\mathrm{n}=10$ and $1,5,9$ successes

$-380570190(x-1)^{18} x^{10}$
$-1163381400(x-1)^{14} x^{14}$
$-380570190(x-1)^{10} x^{18}$

For a Beta $(10,10)$ prior and data: $\mathrm{n}=100$ and $10,50,90$ successes

For a Beta (1,5) prior and data: $\mathrm{n}=10$ and $1,5,9$ successes

For a Beta (1,5) prior and data: $\mathrm{n}=100$ and 10, 50,90 successes

Prior and posterior distributions: examples (2)

2. Let X_{1}, \ldots, X_{n} be IID r.v. from $N\left(\theta, \sigma^{2}\right)$, and σ^{2} known; $\theta \sim N\left(m, \tau^{2}\right)$ for m, τ known.
Then the posterior distribution for θ :

$$
N\left(\frac{n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}, \frac{1}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}\right)
$$

conjugate prior for a normal distr.

Bayesian Statistics

Based on the Bayes approach, we can
\square find estimates
\square find an equivalent of confidence intervals
\square verify hypotheses
\square make predictions

Bayesian Most Probabale (BMP) / Maximum a posteriori Probability (MAP) estimate

Similar to ML estimation: the argument which maximizes the posterior distribution:

$$
\pi\left(\hat{\theta}_{B M P} \mid x_{1}, \ldots, x_{n}\right)=\max _{\theta} \pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)
$$

i.e.

$$
B M P(\theta)=\hat{\theta}_{B M P}=\operatorname{argmax}_{\theta} \pi\left(\theta \mid x_{1}, \ldots, x_{n}\right)
$$

BMP: examples

1. Let X_{1}, \ldots, X_{n} be IID r.v. from a Bernoulli distr. with prob. of success θ; for $\theta \in(0,1)$ We know the posterior distribution:

$$
\operatorname{Beta}\left(\sum_{i=1}^{n} x_{i}+\alpha, n-\sum_{i=1}^{n} x_{i}+\beta\right)
$$

we have max for

$$
B M P(\theta)=\frac{\sum_{i=1}^{n} x_{i}+\alpha-1}{n+\beta+\alpha-2}
$$

$$
\pi(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
$$

Beta (α, β) distr; the mode of this distr
$=(\alpha-1) /(\alpha+\beta-2)$
for $\alpha>1, \beta>1$
i.e. for 5 successes in 10 trials for a prior $\mathrm{U}(0,1)$ (i.e. $\operatorname{Beta}(1,1)$ distr.), we have $B M P(\theta)=5 / 10=1 / 2$
and for 9 successes in 10 trials for the same prior distr., we have $B M P(\theta)=9 / 10$

BMP: examples (2)

2. Let X_{1}, \ldots, X_{n} be IID r.v. from $N\left(\theta, \sigma^{2}\right)$, with σ^{2} known; $\theta \sim N\left(m, \tau^{2}\right)$ for m, τ known.
Then the posterior distr. for θ : so

$$
N\left(\frac{n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}, \frac{1}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}\right)
$$

$$
B M P(\theta)=\frac{n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}
$$

i.e. if we have a sample of 5 obs $1.2 ; 1.7 ; 1.9 ; 2.1 ; 3.1$ from distr. $\mathrm{N}(\theta, 4)$ and the prior distr is $\theta \sim N(1,1)$, then
$B M P(\theta)=(5 / 4 * 2+1) /(5 / 4+1)=14 / 9 \approx 1.56$
and if the prior distr were $\theta \sim N(3,1)$, then
$B M P(\theta)=(5 / 4 * 2+1 * 3) /(5 / 4+1)=22 / 9 \approx 2.44$

Bayes Estimator

An estimation rule which minimizes the posterior expected value of a loss function
$L(\theta, a)$ - loss function, depends on the true value of θ and the decision a.
e.g. if we want to estimate $g(\theta)$:
$L(\theta, a)=(g(\theta)-a)^{2}$ - quadratic loss function
$L(\theta, a)=|g(\theta)-a|$ - module loss function

Bayes Estimator - cont.

We can also define the accuracy of an estimate for a given loss function :
$\operatorname{acc}(\Pi, \hat{g}(x))=E(L(\theta, \hat{g}(x)) \mid X=x)=\int_{\theta} L(\theta, \hat{g}(x)) \pi(\theta \mid x) d \theta$
(the average loss of the estimator for a given prior distribution and data, i.e. for a specific posterior distribution)

Bayes Estimator - cont. (2)

The Bayes Estimator for a given loss
function $L(\theta, a)$ is \hat{g}_{B} such that
$\forall x \quad \operatorname{acc}\left(\Pi, \hat{g}_{B}(x)\right)=\min _{a} \operatorname{acc}(\Pi, a)$
For a quadratic loss function $(\theta-\mathrm{a})^{2}$:

$$
\hat{\theta}_{B}=E(\theta \mid X=x)=E\left(\Pi_{x}\right)
$$

For a module loss function $|\theta-\mathrm{a}|$.

$$
\hat{\theta}_{B}=\operatorname{Med}\left(\Pi_{x}\right)
$$

Bayes Estimator: Example (1)

1. Let X_{1}, \ldots, X_{n} be IID r.v. from a Bernoulli distr. with prob. of success θ; for $\theta \in(0,1)$

$$
\pi(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
$$ We know the posterior distribution:

$$
\operatorname{Beta}\left(\sum_{i=1}^{n} x_{i}+\alpha, n-\sum_{i=1}^{n} x_{i}+\beta\right)
$$

so the Bayes Estimator is

$$
\hat{\theta}_{B}=\frac{\sum_{i=1}^{n} x_{i}+\alpha}{n+\beta+\alpha}
$$

$\operatorname{Beta}(\alpha, \beta)$ distr with mean
$=\alpha /(\alpha+\beta)$
i.e. for 5 successes in 10 trials for a prior $U(0,1)$ (i.e. $\operatorname{Beta}(1,1)$ distr.), we have $\hat{\theta}_{B}=6 / 12=1 / 2$
and for 9 successes in 10 trials for the same prior distr., we have

$$
\hat{\theta}_{B}=10 / 12=5 / 6
$$

BMP: examples

1. Let X_{1}, \ldots, X_{n} be IID r.v. from a Bernoulli distr. with prob. of success θ; for $\theta \in(0,1) \quad \pi(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}$ We know the poster distribution:

$$
\operatorname{Beta}\left(\sum_{i=1}^{n} x_{i}+\alpha, n-\sum_{i=1}^{n} x_{i}+\beta\right)
$$

we have max for

$$
B M P(\theta)=\frac{\sum_{i=1}^{n} x_{i}+\alpha-1}{n+\beta+\alpha-2} \quad \begin{aligned}
& \left.\begin{array}{l}
=(\alpha-1) /(\alpha+\beta-2) \\
\text { for } \alpha>1, \beta>1
\end{array}\right)
\end{aligned}
$$

i.e. for 5 successes in 10 trials for a prior $U(0,1)$ (i.e. Beta(1,1) distr.), we have $B M P(\theta)=5 / 10=1 / 2$
and for 9 successes in 10 trials for the same prior distr., we have $B M P(\theta)=9 / 10$

Bayes Estimator: examples (2)

2. Let X_{1}, \ldots, X_{n} be IID r.v. from $N\left(\theta, \sigma^{2}\right)$, with σ^{2} known; $\theta \sim N\left(m, \tau^{2}\right)$ for m, τ known.
Then the a posteriori distr for $\theta:{ }_{N}\left(\frac{n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}, \frac{1}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}\right)$
so $\quad n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m$
i.e. if we have sa sample of 5 obs $1.2 ; 1.7 ; 1.9 ; 2.1 ; 3.1$ from distr. $\mathrm{N}(\theta, 4)$ and the prior distr is $\theta \sim N(1,1)$, then

$$
\hat{\theta}_{B}=(5 / 4 * 2+1) /(5 / 4+1)=14 / 9 \approx 1.56
$$

and if the prior distr were $\theta \sim N(3,1)$, then

$$
\hat{\theta}_{B}=(5 / 4 * 2+1 * 3) /(5 / 4+1)=22 / 9 \approx 2.44
$$

BMP: examples (2)

2. Let X_{1}, \ldots, X_{n} be IID r.v. from $N\left(\theta, \sigma^{2}\right)$, with σ^{2} known; $\theta \sim N\left(m, \tau^{2}\right)$ for m, τ known.
 so

$$
B M P(\theta)=\frac{n \frac{1}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} m}{n \frac{1}{\sigma^{2}}+\frac{1}{\tau^{2}}}
$$

i.e. if we have sa sample of 5 obs $1.2 ; 1.7 ; 1.9 ; 2.1 ; 3.1$ from distr. $\mathrm{N}(\theta, 4)$ and the prior distr is $\theta \sim N(1,1)$, then

$$
B M P(\theta)=(5 / 4 * 2+1) /(5 / 4+1)=14 / 9 \approx 1.56
$$

and if the prior distr were $\theta \sim N(3,1)$, then

$$
B M P(\theta)=\left(5 / 4 * 2+1^{*} 3\right) /(5 / 4+1)=22 / 9 \approx 2.44
$$

Caution!

1. Tests should be designed BEFORE we start examining the data
2. The only way to increase power and improve significance level simultaneously is by collecting more observations (frequently not possible if we work on existing data).
3. Significant p-value does not mean effect is important/sizeable.
4. P-values in repeated samples

P-values in repeated samples

We examine if a new training has effect. The null hypothesis is that the training has no effect, and the alternative hypothesis is that it has effect. We use a 5% significance level for the test.
\square A randomly selected school has completed this training, and after completion the statistical test returns a P-value equal to 4%.
$\square 25$ different schools have completed this training. At one of the schools the test returned a P-value of 4%.

