Mathematical Statistics 2020/2021, Homework 6 (Two problems)

Name and Surname \qquad Student's number \qquad

In the problems below, please use the following: as k - the sum of digits in your student's number; as m - the sum of the two largest digits in your student's number; and as n - the smallest digit in your student's number plus 1. For example, if an index number is 609999: $k=42, m=18, n=1$.
Please write down the solutions (transformations, substitutions etc.), and additionally provide the final answer in the space specified (the answer should be a number in decimal notation, rounded to four digits).
11. A group of k students were surveyed regarding the amount of time they devote to work during their summer break. Assuming that the time spent (in hours) follows a normal distribution with mean μ and variance equal to m^{2}, where $\mu>0$ is an unknown parameter, we want to verify the null hypothesis that $\mu=3 k$ hours, against the alternative that it is more. What is the critical region of a $\frac{m+n}{2} \%$ significance level test for these hypotheses? What is the value of the appropriate test statistic, if the sample average was equal to $3 k+2 n$? What is the p-value of this result? What is the decision?

ANSWER:

Critical region of the test:

Value of test statistic:
p-value of test statistic:

Reject null?
(YES/NO):

Solution:
12. The price levels of hostel beds were studied in four summer resorts. Basic characteristics for the collected data are summarized in the table below:

sample stats \backslash city	A	B	C	D
average price (in dollars, per bed)	$k+3 n$	k	$k-3 n$	$k+1$
variance of price (unbiased estimator)	$k^{2}-3 m$	$k^{2}-3 m$	$k^{2}-2 m$	$k^{2}-2 m$
sample size	$2 m$	$40 n-k$	k	$2 m$

Assuming that the prices in different cities are independent and follow normal distributions with unknown means and a common variance, verify the hypothesis that the average price levels in the four cities are equal, for a significance level $\alpha=0.1$.

ANSWER:

| Critical value
 for the test: | Value of
 test statistic: |
| :--- | :--- | | Reject null? |
| :--- |
| $(\mathrm{YES} / \mathrm{NO}):$ |

Solution:

