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1. Hypothesis Testing – Examples of LR tests, cont.

Continuing our analysis of examples of LR tests, we will now turn to cases where we have
more than one population sample to research.

1.2. Two populations. In the case where we have two populations (two samples), we might
be interested in whether these two populations have the same characteristics (means, varian-
ces...). The types of models most commonly used in these cases are similar to the models used
for the single population case where we compare with an external value; the test statistics are
slightly different, however.

1.2.1. Model I. Lest us first assume that we have a random sample X1, . . . , Xn from a normal
distribution with parameters µX and σ2

X , and a random sample Y1, . . . , Yn from a normal
distribution with parameters µY and σ2

Y , where σ2
X and σ2

Y are known. Let us assume that
we want to test the null hypothesis that µX = µY , against different alternatives. We will use
a test statistic slightly modified with respect to the single sample case:

U =
X̄ − Ȳ√

σ2
X/nx + σ2

Y /nY
,

which under the null hypothesis has a standard normal distribution, to construct critical
regions in the following way:

• If the alternative is that µX > µY , then the critical region of the test for significance
level α is equal to

C∗ = {x : U(x) > u1−α}
• If the alternative is that µX < µY , then the critical region of the test for significance

level α is equal to
C∗ = {x : U(x) < −u1−α = uα}.

Please note, however, that this case is redundant, since we can just change the order
of the samples and use the previous case instead. For this reason, in the models that
follow, we will omit this type of alternative.
• If the alternative is that µX 6= µY , then the critical region of the test for significance

level α is equal to
C∗ = {x : |U(x)| > u1−α/2},

where up signifies the quantile of rank p of the standard normal distribution.
Example:

(1) Suppose we have a random sample of 10 observations from a normal distribution with
an unknown mean µ1 and variance equal to 112, and 10 observations from a normal
distribution with an unknown mean µ2 and variance equal to 132. Let us assume that
the average in the first sample amounts to 501, while the average in the second sample
amounts to 498. Clearly, these two empirical averages differ. But does this mean that
the means of the distributions differ, too? Or is this observed difference just due to
pure chance?

Suppose that we wish to verify whether the means of the distributions are equal,
at a significance level α = 0.05. The value of the appropriate test statistic amounts
to U = 501−498√

132

10
+ 112

10

≈ 0.557. The critical value for a two-sided test at the α = 0.05

significance level amounts to u0.975 ≈ 1.96. The value of the test statistic does not
fall into the critical region of (−∞,−1.96) ∪ (1.96,∞), so we do not have grounds
to reject the null. We could also note that the p-value of the result amounts to
2 · Φ(−0.557) ≈ 2 · 0.289 = 0.578. Since the p-value is larger than the adopted
significance level, we do not have grounds to reject the null. In this case, we found
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that the observed difference in empirical averages would be a very common outcome if
the distributions were as specified by the null hypothesis. Therefore, we do not have
any grounds to claim that the two theoretical means aren’t in fact equal.

If we wished to verify the null hypothesis that the means are equal, against the
alternative that the mean in the second sample is smaller at the same significance
level of α = 0.05, the result would stay the same: the value of the test statistic
0.557 does not fall into the critical region for the one-sided test, which is equal to
(1.64 = u0.95;∞). This time, the p-value of the result is equal to 1−Φ(0.557) ≈ 0.289,
so it is smaller than in the case of the two-sided test, but again – this result is far from
any extremity, so we do not have grounds to reject the null.

1.2.2. Model II. Lest us now assume that we have a random sample X1, . . . , Xn from a normal
distribution with parameters µX and σ2, and a random sample Y1, . . . , Yn from a normal
distribution with parameters µY and σ2, where σ2 is unknown, but assumed to be the
same for both samples. Let us further assume that we want to test the null hypothesis
that µX = µY , against different alternatives. We will use a test statistic:

T =
X̄ − Ȳ√

(nX − 1)S2
X + (nY − 1)S2

Y

√
nXnY
nX + nY

(nX + nY − 2),

which under the null hypothesis has a t-Student distribution with nX + nY − 2 degrees of
freedom, to construct critical regions in the following way:

• If the alternative is that µX > µY , then the critical region of the test for significance
level α is equal to

C∗ = {x : T (x) > t1−α(nX + nY − 2)}

• If the alternative is that µX 6= µY , then the critical region of the test for significance
level α is equal to

C∗ = {x : |T (x)| > t1−α/2(nX + nY − 2)},

where tp(nX +nY −2) is the quantile of rank p of the t-Student distribution with nX +nY −2
degrees of freedom, and S2

X and S2
Y are unbiased estimators of the variance for the sample of

Xs ad Y s, respectively.
The test statistic used in this case might be rearranged slightly, to become

T =
X̄ − Ȳ

S∗

√
1
nX

+ 1
nY

where

S2
∗ =

(nX − 1)S2
X + (nY − 1)S2

Y

nX + nY − 2

is an estimator of the variance based on both samples jointly. This second form of the formula
shows that the philosophy of the means testing procedure: take the difference of means and
standardize by dividing by the standard deviation, is the same in all cases. If we assume that
the two samples have the same variances, the S2

∗ estimator has a chi-squared distribution, just
like in the single sample case, and it is easy to describe the distribution of the test statistic.
However, if we could not assume that the variances were equal, and we allowed σ2

X 6= σ2
Y , we

would have a big problem. We would still be able to calculate the test statistic, but it would be
impossible to find a general formula to describe the distribution of this test statistic without
using the values of the unknown parameters σ2

X and σ2
X in some form (which obviously we

cannot do, since they are assumed to be unknown).
Since in this model we must assume that the variances in the two populations are equal, we

might wish to verify this assumption. Let us assume that we want to test σ2
X = σ2

Y , against
different types of alternatives. In this case, we can use a test statistic
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F =
S2
X

S2
Y

,

where F has the Fisher distribution (also called the Fisher-Snedecor or F distribution) with
nX − 1 and nY − 1 degrees of freedom, to construct critical regions in the following way:

• If the alternative is that σ2
X > σ2

Y , then the critical region of the test for significance
level α is equal to

C∗ = {x : F > F1−α(nX − 1, nY − 1)}
• If the alternative is that σ2

X 6= σ2
Y , then the critical region of the test for significance

level α is equal to

C∗ = {x : F > F1−α/2(nX − 1, nY − 1) ∨ F < Fα/2(nX − 1, nY − 1)}
where Fp(n,m) is the quantile of rank p of the F distribution with n and m degrees of
freedom, and S2

X and S2
Y are unbiased estimators of the variance for the sample of Xs ad Y s,

respectively.

1.2.3. Model III. Lest us now assume that we have a random sample X1, . . . , Xn from a distri-
bution with mean µX and variance σ2

X , and a random sample Y1, . . . , Yn from a distribution
with mean µY and variance σ2

Y , where σ2
X and σ2

Y are not known and not assumed equal.
As we have stated above, in general it is not possible to test the equality of means in this
case, even if we knew that the distributions were normal. However, if we want to test the null
hypothesis that µX = µY , against different alternatives and we have a large sample size,
we might use a test statistic slightly modified with respect to the first model:

U =
X̄ − Ȳ√

S2
X/nX + S2

Y /nY
,

which under the null hypothesis has (for large sample sizes) approximately a standard normal
distribution, to construct critical regions in the following way:

• If the alternative is that µX > µY , then the critical region of the test for significance
level α is equal to

C∗ = {x : U(x) > u1−α}
• If the alternative is that µX 6= µY , then the critical region of the test for significance

level α is equal to
C∗ = {x : |U(x)| > u1−α/2},

where up signifies the quantile of rank p of the standard normal distribution, and S2
X and S2

Y

are unbiased estimators of the variance for the sample of Xs ad Y s, respectively.

1.2.4. Model IV. Again, as a special case of model III, we might consider two-point distri-
butions and compare fractions. If we assume that the random variables X1, . . . , Xn that we
observe come from a distribution such that P (X = 1) = pX = 1− P (X = 0), and Y1, . . . , Yn
come from a distribution such that P (Y = 1) = pY = 1 − P (Y = 0), and we are to test the
null hypothesis that pX = pY against different types of alternatives, we might use the test
statistic provided in Model III with a modified estimator of the variance:

U∗ =
X
nX
− Y

nY√
p∗(1− p∗)( 1

nX
+ 1

nY
)
,

where

p∗ =
X + Y

nX + nY
is an estimator of the fraction based on both samples simultaneously. Under the null hy-
pothesis, for large sample sizes the test statistic U∗ has an approximate standard normal
distribution, which allows us to construct the following critical regions
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• If the alternative is that pX > pY , then the critical region of the test for significance
level α is equal to

C∗ = {x : U∗(x) > u1−α}
• If the alternative is that pX 6= pY , then the critical region of the test for significance

level α is equal to

C∗ = {x : |U∗(x)| > u1−α/2},
where up signifies the quantile of rank p of the standard normal distribution.

1.3. Three or more populations – ANOVA. What if we wanted to compare more than
two populations simultaneously? The naive, simplest approach would be to compare all
populations in pairs, and reject the null hypothesis if in any of the comparisons the decision
was to reject the null hypothesis. In such a case, however, we do not control the significance
level of the test. This is because the probability of incorrectly rejecting the null hypothesis
is larger than the significance level adopted in the pairwise comparisons. To see this, let us
assume that we have three populations, in which in reality the parameters under study are
equal to each other. Let us also assume that we perform three pairwise tests for equality
of parameters for each pair of populations, such that the significance level for each pairwise
test is equal to α. In such a case, the chance that we will conclude that not all are the
same is equal to the probability that in at least one case we will conclude that we should
reject the null hypothesis. This probability may be calculated from the complementary event,
i.e. as 1 minus the chance that in all three tests we will not find evidence against the null
hypothesis. Assuming that the results of the pairwise tests are independent (which is a
simplifying assumption!), we have that the probability of committing an error of the first
type in the whole procedure amounts to 1− (1−α)3 = α(1+α+α2) and is not equal to α but
larger than alpha. If the results of the pairwise tests are not independent (and we may expect
them not to be independent), we do not know what this probability amounts to. Therefore,
the procedure of a sequence of pairwise testing is not a good procedure.

Instead, if we want to check whether the means in more than two populations are equal,
we may apply a procedure called the analysis of variance (ANOVA). Let us assume that we
have samples from k populations, expressed as:

X1,1, X1,2, . . . X1,n1

X2,1, X2,2, . . . X2,n2

...
Xk,1, Xk,2, . . . Xk,nk

where ni is the number of observations in the i-th sample. Let us assume that all variables Xi,j

are independent, and that we have Xi,j ∼ N(µi, σ
2) – the observations form the i-th sample

have a normal distribution with mean µi, and all observations come from distributions having
the same variance σ2. All parameters (µ1, ..., µk and σ2) are unknown. If n = n1 + . . .+ nk is
the overall sample size, we may test the null hypothesis that

H0 : µ1 = µ2 = . . . = µk

(all means are equal to each other) against the alternative

H1 : ¬H0

(not all means are equal to each other) using a test statistic

F =

∑k
i=1 ni(X̄i − X̄)2/(k − 1)∑k

i=1

∑ni

j=1(X̄i,j − X̄i)2/(n− k)
,

which, under the null hypothesis, has an F distribution with k − 1 and n − k degrees of
freedom. This means that a test with a critical region

C∗ = {x : F (x) > F1−α(k − 1, n− k)} ,
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where F1−α(k − 1, n − k) is the quantile of rank 1 − α of the F distribution with k − 1 and
n − k degrees of freedom is the test that we were looking for, at a significance level α. For
n = 2, this test is equivalent to the two-population test (Model II) above.

The philosophy behind this test is as follows. We examine the variance in the whole sample
(consisting of observations from all subsamples). We decompose the overall variance (or rather
sum of squares) into two components: one coming from the variability within each subsample
(within-group), and one reflecting the variability between samples (between-group). It may
be shown that

k∑
i=1

ni∑
j=1

(Xi,j − X̄)2︸ ︷︷ ︸
sum of squares (SS)

=
k∑
i=1

ni(X̄i − X̄)2︸ ︷︷ ︸
sum of squares between (SSB)

+
k∑
i=1

ni∑
j=1

(X̄i,j − X̄i)
2

︸ ︷︷ ︸
sum of squares within (SSW)

.

Therefore, the test statistic that we use has the form:

F =
SSB/(k − 1)

SSW/(n− k)
,

and we reject the null if the sum of squares between groups “dominates” over the sum of
squares within groups (after scaling), meaning that the variability that we see in the data
comes more from variability between groups than within groups. Note that if in our sample
all subsample means are exactly equal to each other, then the numerator of the test statistic
is zero, and the value of the test statistic is also zero. If the means start differing from each
other, the numerator increases; if it becomes too large (with respect to the differences that
we see within the particular samples), we reject the null.

Example

(1) Let us assume that we study the yearly chocolate consumption of milk chocolate bars
of inhabitants of three cities: A, B and C. We base our reasoning on a sample of nA = 8
observations from city A, nB = 10 observations from city B and nC = 9 observations
from city C. Suppose that the average consumption levels amount to 11, 10 and 7
milk chocolate bars for cities A, B and C, respectively, while the sample variances
amount to 3.5, 2.8 and 3, respectively. Assuming that the yearly consumption of milk
chocolate bar follows a normal distribution with equal variances in the cities under
study, we may verify whether the average consumption level depends on the city using
an analysis of variance test (we will use a 1% significance level). We have:
• the average consumption level in the whole sample amounts to
X̄ = 1

27
(11 · 8 + 10 · 10 + 7 · 9) ≈ 9.3;

• the sum of squares between groups amounts to
SSB = (11− 9.3)2 · 8 + (10− 9.3)2 · 10 + (7− 9.3)2 · 9 = 75.63;
• the sum of squares within groups amounts to
SSW = 3.5 · 7 + 2.8 · 9 + 3 · 8 = 73.7.

Therefore, the value of the test statistic that we should use in this case amounts to

F =
75.63/(3− 1)

73.7/(27− 3)
≈ 12.31.

Given that the critical value of the ANOVA test is equal to the quantile of the F
distribution with 2 and 24 degrees of freedom of rank 0.99: F0.99(2, 24) ≈ 5.61, we have
that the value of the test statistic falls into the critical region (5.61;∞), and hence
we reject the null hypothesis of the equality of means in the three groups considered.
This means that we can’t claim that in all cities the average yearly consumption of
milk chocolate bars is the same. In at least one of the cities considered, the average is
different.
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