Mathematical Statistics

Anna Janicka

Lecture XIII, 31.05.2021

ANOVA - CONT.
Non-Parametric Tests

Plan for Today

1. Analysis of variance tests (ANOVA)
2. Goodness-of-fit tests

■ Kolmogorov test

- Kolmogorov-Smirnov (two samples)

■ Kolmogorov-Lilliefors
■ chi-square goodness-of-fit
3. Tests of independence

- chi-square test

ANOVA assumptions - reminder

Assume we have k samples:

$$
\begin{aligned}
& X_{1,1}, X_{1,2}, \ldots, X_{1, n_{1}} \\
& X_{2,1}, X_{2,2}, \ldots, X_{2, n_{2}} \\
& \ldots \\
& X_{k, 1}, X_{k, 2}, \ldots, X_{k, n_{k}}, \text { and }
\end{aligned}
$$

- all $X_{i, j}$ are independent $\left(i=1, \ldots, k, j=1, . ., n_{i}\right)$
- $X_{i, j} \sim N\left(m_{i}, \sigma^{2}\right)$
- we do not know $m_{1}, m_{2}, \ldots, m_{k}$, nor σ^{2}

$$
\text { let } n=n_{1}+n_{2}+\ldots+n_{k}
$$

Test of the Analysis of Variance (ANOVA) for significance level α - reminder

$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
$H_{1}: \neg H_{0} \quad$ (i.e. not all μ_{i} are equal)
A LR test; we get a test statistic:

$$
F=\frac{\sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} /(k-1)}{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2} /(n-k)} \sim F(k-1, n-k)
$$

with critical region

$$
\begin{aligned}
C^{*}=\{x: F(x)> & \left.F_{1-\alpha}(k-1, n-k)\right\} \\
& \bar{X}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i, j}, \bar{X}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{i, j}=\frac{1}{n} \sum_{i=1}^{k} n_{i} \bar{X}_{i}
\end{aligned}
$$

for $\mathrm{k}=2$ the ANOVA is equivalent to the two-sample t -test.

ANOVA - interpretation

we haye
$\sum_{i=1}^{\sum_{\gamma_{i}}} \sum_{j=1}^{k}\left(X_{i, j}-\bar{X}\right)^{2}=\sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2}$

Sum of Squares (SS)

Sum of Squares Between (SSB)

Sum of Squares Within (SSW)
$\frac{1}{k-1} \sum_{i=1}^{k} n_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2} \quad$ - between group variance estimator $\frac{1}{n-k} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(X_{i, j}-\bar{X}_{i}\right)^{2} \quad$ - within group variance estimator

ANOVA test - table

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	SSB	$\mathrm{k}-1$	-
within groups	SSW	$\mathrm{n}-\mathrm{k}$	-
total	SS	$\mathrm{n}-1$	F

ANOVA test - example

Yearly chocolate consumption in three cities: A, B, C based on random samples of $n_{A}=8, n_{B}=10, n_{C}=9$ consumers. Does consumption depend on the city?

	A	B	C
sample mean	11	10	7
sample variance	3.5	2.8	3

$\bar{X}=\frac{1}{27}(11 \cdot 8+10 \cdot 10+7 \cdot 9)=9.3$
$S S B=(11-9.3)^{2} \cdot 8+(10-9.3)^{2} \cdot 10+(7-9.3)^{2} \cdot 9=75.63$
$S S W=3.5 \cdot 7+2.8 \cdot 9+3 \cdot 8=73.7$
$F=\frac{75.63 / 2}{73.7 / 24} \approx 12.31$ and $F_{0.99}(2,24) \approx 5.61$ \rightarrow reject H_{0} (equality of means),

ANOVA test - table - example

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	75.63	2	-
within groups	73.7	24	-
total	149.33	26	12.31

Non-parametric tests

\square we check whether a random variable fits a given distribution (goodness-of-fit tests).
\square we check whether random variables have the same distribution
\square we check whether variables/characteristics are independent (test of independence)

Kolmogorov goodness-of-fit test

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from distribution with CDF F.
$H_{0}: F=F_{0}$
(F_{0} specified)
$H_{1}: \neg H_{0}$
(i.e. the CDF is different)

If F_{0} is continuous, we use the statistic

$$
D_{n}=\sup _{t \in R}\left|F_{n}(t)-F_{0}(t)\right|=\max \left\{D_{n}^{+}, D_{n}^{-}\right\}
$$

where

$$
\begin{aligned}
& D_{n}^{+}=\max _{i=1, \ldots, n}\left|\frac{i}{n}-F_{0}\left(x_{i: n}\right)\right|, D_{n}^{-}=\max _{i=1, \ldots, n}\left|F_{0}\left(x_{i: n}\right)-\frac{i-1}{n}\right| \\
& \text { and } F_{n}(t)-n \text {-th empirical CDF }
\end{aligned}
$$

Kolmogorov goodness-of-fit test - cont.

The test: we reject H_{0} when:

$$
D_{n}>c(\alpha, n)
$$

for a critical value $c(\alpha, n)$.
Theorem. If H_{0} is true, the distribution of D_{n} does not depend on F_{0}.
Problem: This distribution needs tables, for each different n.
Theorem. In the limit
the approximation may be used for $n \geq 100$

Kolmogorov goodness-of-fit test - cont. (2)

Tables of the asymptotic distribution $K(d)$

$1-\alpha$	0.8	0.9	0.95	0.99
quantile of $K(d)$	1.07	1.22	1.36	1.63
$c(n, \alpha)$ for $n \geq 100$	$1.07 / \sqrt{n}$	$1.22 / \sqrt{n}$	$1.36 / \sqrt{n}$	$1.63 / \sqrt{n}$

Kolmogorov goodness-of-fit test - example

Does the sample
0.4085
0.5267
0.3751
0.83290 .0846
0.8306
0.6264
0.3086
$0.3662 \quad 0.7952$ come from a uniform distribution $U(0,1)$?

Kolmogorov goodness-of-fit test - example cont.

| $X_{i \cdot 10}$ | $(\mathrm{i}-1) / 10$ | $\mathrm{i} / 10$ | $\mathrm{i} / 10-\mathrm{F}\left(\mathrm{X}_{\mathrm{i}-10}\right)$ | $\mathrm{F}\left(\mathrm{X}_{\mathrm{i}-10}\right)-(\mathrm{i}-1) / 10$ |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 0.0846 | 0 | 0.1 | 0.0154 | 0.0846 |
| 0.3086 | 0.1 | 0.2 | -0.1086 | $\mathbf{0 . 2 0 8 6}$ |
| 0.3662 | 0.2 | 0.3 | -0.0662 | 0.1662 |
| 0.3751 | 0.3 | 0.4 | 0.0249 | 0.0751 |
| 0.4085 | 0.4 | 0.5 | 0.0915 | 0.0085 |
| 0.5267 | 0.5 | 0.6 | 0.0733 | 0.0267 |
| 0.6264 | 0.6 | 0.7 | 0.0736 | 0.0264 |
| 0.7952 | 0.7 | 0.8 | 0.0048 | 0.0952 |
| 0.8306 | 0.8 | 0.9 | 0.0694 | 0.0306 |
| 0.8329 | 0.9 | 1 | $\mathbf{0 . 1 6 7 1}$ | -0.0671 |

$$
D_{n}=0.2086 \quad c(10 ; 0.9)=0.369
$$

\rightarrow no grounds to reject the null hypothesis that the distribution is uniform

Kolmogorov-Smirnov test of equality of distributions

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distribution with CDF $F, Y_{1}, Y_{2}, \ldots, Y_{m}$ are an IID sample from a distribution with CDF G.
$H_{0}: F=G$
$H_{1}: \neg H_{0} \quad$ (i.e. the CDF functions/distributions differ)
If F (and G) is continuous, we test with

$$
D_{n, m}=\sup _{t \in R}\left|F_{n}(t)-G_{m}(t)\right|
$$

where $F_{n}(t)-n$-th empirical CDF for the first sample, and $G_{m}(t)-m$-th empirical CDF for the second sample

Kolmogorov-Smirnov test of equality of distributions - cont.

The test: we reject H_{0} if:

$$
D_{n, m}>c(\alpha, n, m)
$$

for a critical value $c(\alpha, n, m)$.
Theorem. If H_{0} is true, the distribution of $D_{n, m}$ does not depend on F (or G).
Theorem. In the limit

$$
\begin{gathered}
P\left(\sqrt{\frac{n m}{n+m}} D_{n, m} \leq d\right) \xrightarrow[n \rightarrow \infty, m \rightarrow \infty]{\longrightarrow} K(d)=\sum_{\substack{k=-\infty \\
+\infty}}(-1)^{k} e^{-2 k^{2} d^{2}} \\
\text { the approximation is OK for } n, m \geq 100
\end{gathered}
$$

Kolmogorov-Lilliefors goodness-of-fit test

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a distribution with CDF F.
H_{0} : F is a CDF of a normal distribution (with unknown parameters)
$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is not normal)
We test with

$$
D_{n}=\max \left\{D_{n}^{+}, D_{n}^{-}\right\}
$$

where
and

$$
\begin{aligned}
& D_{n}^{+}=\max _{i=1, \ldots, n}\left|\frac{i}{n}-z_{i}\right|, D_{n}^{-}=\max _{i=1, \ldots, n}\left|z_{i}-\frac{i-1}{n}\right| \\
& z_{i}=\Phi\left(\frac{X_{i: n}-\bar{X}}{S}\right) \\
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

Kolmogorov-Lilliefors goodness-of-fit test cont.

The test: we reject H_{0} if:

$$
D_{n}>D_{n}(\alpha)
$$

for a critical value $D_{n}(\alpha)$.
Theorem. If H_{0} is true, the distribution of D_{n} does not depend on the parameters of the normal distribution.
Problem: we need tables and do not know the analytical form of this distribution...
Used for small samples ($\mathrm{n} \leq 30$), when it performs better than the chi-square test

Kolmogorov-Lilliefors goodness-of-fit test critical values

Chi-square goodness-of-fit test

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a discrete distribution with k values $(1, \ldots, k)$. H_{0} : the distribution probabilities are equal to

i	1	2	3	\ldots	k
$P(X=1)$	p_{1}	p_{2}	p_{3}	\ldots	p_{k}

$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different)
If the results of the experiment are
value labels

i	1	2	3	\ldots	k
N_{i}	N_{1}	N_{2}	N_{3}	\ldots	N_{k}

where N_{i} denotes the number of outcomes
equal to $i_{\text {nons seneces }} \quad N_{i}=\sum_{j=1}^{n} 1_{X_{j}=i}$

Chi-square goodness-of-fit test - cont.

General form of the test:

$$
\chi^{2}=\sum \frac{(\text { observed value }- \text { expected value })^{2}}{\text { expected value }}
$$

here:

$$
x^{2}=\sum_{i=1}^{k} \frac{\left(N_{i}-n p_{i}\right)^{2}}{n p_{i}}
$$

Theorem. If H_{0} is true, the distribution of the χ^{2} statistic converges to a chi-square distr with $k-1$ degrees of freedom $\chi^{2}(k-1)$ for $n \rightarrow \infty$
Procedure: we reject H_{0} if $\chi^{2}>c$, where $c=\chi^{2}{ }_{1-\alpha}(k-1)$ is a quantile of rank 1- α from a chisquare distr with k-1 degrees of freedom

Chi-square goodness-of-fit test - example

Is a die symmetric? For a significance level $\alpha=0.05$ $n=150$ tosses. Results:

i	1	2	3	4	5	6
N_{i}	15	27	36	17	26	29

$H_{0}:\left(N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right)$ $\sim \operatorname{Mult}(150,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)$
$H_{1}: \neg H_{0}$
$\chi^{2}=\frac{(15-25)^{2}}{25}+\frac{(27-25)^{2}}{25}+\frac{(36-25)^{2}}{25}+\frac{(17-25)^{2}}{25}+\frac{(26-25)^{2}}{25}+\frac{(29-25)^{2}}{25}$
$=12.24$

Chi-square goodness-of-fit test - distribution with an unknown parameter.

Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a discrete distribution with k values $(1, \ldots, k)$. H_{0} : distribution probabilities are equal to

i	1	2	3	\ldots	k
$\mathrm{P}(X=i)$	$p_{1}(\theta)$	$p_{2}(\theta)$	$p_{3}(\theta)$	\ldots	$p_{k}(\theta)$

where θ is an unknown parameter of dimension d.
$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different)

Chi-square goodness-of-fit test - distribution with an unknown parameter, cont.

Test statistics are constructed like in the previous case, with the expected values calculated using ML estimators of the parameter θ. Only the number of degrees of freedom changes:
Theorem. If H_{0} is true, the distribution of the χ^{2} statistic converges to a chi-square distribution with $k-d-1$ degrees of freedom $\chi^{2}(k-d-1)$ for $n \rightarrow \infty$

Chi-square goodness-of-fit test - version for continuous distributions

Kolmogorov tests are better, but the chisquare test may also be used
Model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from a continuous distribution.
H_{0} : The distribution is given by F
$H_{1}: \neg H_{0} \quad$ (i.e. the distribution is different) It suffices to divide the range of values of the random variable into classes and count the observations. The expected values are known (result from F). Then: the chi-square test.

Chi-square goodness-of-fit test - practical notes

\square The test should be used for large samples only.
\square The expected counts can't be too small (<5). If they are smaller, observations should be grouped.
\square The classes in the „continuous" version may be chosen arbitrarily, but it is best if the theoretical probabilities are balanced.

Chi-square test of independence

Model: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are an IID sample from a two-dimensional distribution with $r \cdot s$ values (denoted by the set $\{1, \ldots, r\} \times\{1, \ldots, s\}$).
Let the theoretical distribution be

$$
\begin{array}{rlrl}
p_{i j}=P(X & =i, Y=j) & i=1, \ldots, r j=1, \ldots, s \\
\text { ote } & p_{\bullet \bullet} & =\sum_{j=1}^{s} p_{i j}, & p_{\bullet j}=\sum_{i=1}^{r} p_{i j}
\end{array}
$$

Denote
We want to verify independence of X and Y : $H_{0}: p_{i j}=p_{i} \cdot p_{\cdot j} i=1, \ldots, s, \quad j=1, \ldots, r$ $H_{1}: \neg H_{0}$

Chi-squared test of independence - cont.

The empirical distribution may be summarized by a table (so-called contingency table, or crosstab)

$i \backslash j$	1	2	\ldots	s	$N_{i c}$
1	N_{11}	N_{12}		$N_{1 s}$	$N_{1 \bullet}$
2	N_{21}	N_{22}		$N_{2 s}$	$N_{2 \bullet}$
\ldots					
r	N_{r}	N_{\bullet}		$N_{r c}$	N_{r}
$N_{\bullet j}$	$N_{\bullet 1}$	$N_{\bullet 2}$		$N_{\bullet s}$	n

Chi-squared test of independence - cont. (2)

This is a special case of a goodness-of-fit test with $(r-1)+(s-1)$ parameters to be estimated:

The test statistic:

$$
\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(N_{i j}-N_{i \cdot} N_{\bullet j} / n\right)^{2}}{N_{i \cdot} N_{\bullet j} / n}
$$

has a chi-square distribution with $(r-1)(s-1)$ degrees of freedom (if H_{0} is true)

Chi-squared test of independence - example

We verify independence of political and musical preferences, at signif. level $\alpha=0.05$

	Support X	Do not support X	Total
Listen to jazz	25	10	35
Listen to rock	20	20	40
Listen to hip-hop	15	10	25
Total	60	40	100

$$
\begin{aligned}
\chi^{2}= & \frac{(25-60 * 35 / 100)^{2}}{60 * 35 / 100}+\frac{(20-60 * 40 / 100)^{2}}{60 * 40 / 100}+\frac{(15-60 * 25 / 100)^{2}}{60 * 25 / 100} \\
& +\frac{(10-40 * 35 / 100)^{2}}{40 * 35 / 100}+\frac{(20-40 * 40 / 100)^{2}}{40 * 40 / 100}+\frac{(10-40 * 25 / 100)^{2}}{40 * 25 / 100} \\
\approx & 3.57 \\
& \chi_{1-0.05}^{2}((2-1)(3-1))=\chi_{0.95}^{2}(2) \approx 5.99
\end{aligned}
$$

\rightarrow no grounds to reject $\boldsymbol{H}_{\mathbf{0}}$.

2
Faculty of Economic Sciences

