Mathematical Statistics

Anna Janicka

Lecture XII, 24.05.2021

HYPOTHESIS TESTING IV:

PARAMETRIC TESTS: COMPARING TWO OR MORE POPULATIONS

Plan for today

- Parametric LR tests for one population cont.
- 2. Asymptotic properties of the LR test
- 3. Parametric LR tests for two populations
- 4. Comparing more than two populationsANOVA

*x*_{something} **always** means a quantile of rank something

Model IV: comparing the fraction – reminder

Asymptotic model: $X_1, X_2, ..., X_n$ are an IID sample from a two-point distribution, n – large.

$$P_p(X = 1) = p = 1 - P_p(X = 0)$$

 $H_0: p = p_0$ $\begin{array}{ll} \Pi_{0} : \ \rho = \rho_{0} \\ \text{Test statistic:} \end{array} \quad U^{*} = \frac{X - p_{0}}{\sqrt{p_{0}(1 - p_{0})}} \sqrt{n} = \frac{\hat{p} - p_{0}}{\sqrt{p_{0}(1 - p_{0})}} \sqrt{n} \end{array}$ has an approximate distribution N(0,1) for large n H_0 : $p = p_0$ against H_1 : $p > p_0$ $C^* = \{x : U^*(x) > u_{1-\alpha}\}$ critical region H_0 : $p = p_0$ against H_1 : $p < p_0$ critical region $\check{C}^* = \{x : U^*(x) < u_\alpha = -u_{1-\alpha}\}$ H_0 : $p = p_0$ against H_1 : $p \neq p_0$ $C^* = \{x : |U^*(x)| > u_{1-\alpha/2}\}$ 🖉 🎡 critical region

We toss a coin 400 times. We get 180 heads. Is the coin symmetric?

*H*₀:
$$p = \frac{1}{2}$$
 $U^* = \frac{(180/400 - 1/2)}{\sqrt{1/2(1 - 1/2)}}\sqrt{400} = -2$

for $\alpha = 0.05$ and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.975} = 1.96 \rightarrow$ we reject H_0 for $\alpha = 0.05$ and H_1 : $p < \frac{1}{2}$ we have $u_{0.05} = -u_{0.95} = -1.64$ \rightarrow we reject H_0 for $\alpha = 0.01$ and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.995} = 2.58$ \rightarrow we do not reject H_0 for $\alpha = 0.01$ and H_1 : $p < \frac{1}{2}$ we have $u_{0.01} = -u_{0.99} = -2.33$ \rightarrow we do not reject H_0

value for H_1 : $p \neq \frac{1}{2}$: 0.044

p-value for H_1 : $p < \frac{1}{2}$: 0.022

Likelihood ratio test for composite hypotheses – reminder

 $\begin{aligned} X \sim P_{\theta}, \{ \mathsf{P}_{\theta} \colon \theta \in \Theta \} - \text{family of distributions} \\ \text{We are testing } H_0 \colon \theta \in \Theta_0 \text{ against } H_1 \colon \theta \in \Theta_1 \\ \text{ such that } \Theta_0 \cap \Theta_1 = \emptyset, \, \Theta_0 \cup \Theta_1 = \Theta \\ \text{Let} \end{aligned}$

$$H_0: X \sim f_0(\theta_0, \cdot) \text{ for some } \theta_0 \in \Theta_{0.}$$
$$H_1: X \sim f_1(\theta_1, \cdot) \text{ for some } \theta_1 \in \Theta_1,$$

where f_0 and f_1 are densities (for $\theta \in \Theta_0$ and $\theta \in \Theta_1$, respectively)

Likelihood ratio test for composite hypotheses – reminder (cont.)

Test statistic:
$$\tilde{\lambda} = \frac{\sup_{\theta \in \Theta} f(\theta, X)}{\sup_{\theta_0 \in \Theta_0} f_0(\theta_0, X)}$$

or
$$\tilde{\lambda} = \frac{f(\hat{\theta}, X)}{f_0(\hat{\theta}_0, X)}$$

where $\hat{\theta}, \hat{\theta}_0$ are the ML estimators for the model without restrictions and for the null model.

We reject H_0 if $\tilde{\lambda} > \tilde{c}$ for a constant \tilde{c} .

Warsaw University Faculty of Economic Sciences

more convenient if the null is simple or if models are nested

Asymptotic properties of the LR test

We consider two nested models, we test

$$H_0: h(\theta) = 0$$
 against $H_1: h(\theta) \neq 0$

Under the assumption that

- \Box h is a nice function
- $\Box \Theta$ is a *d*-dimensional set

 $\Box \Theta_0 = \{\theta : h(\theta) = 0\}$ is a d - p dimensional set

Theorem: If H_0 is true, then for $n \rightarrow \infty$ the distribution of the statistic $2\ln \tilde{\lambda}$ converges to a chi-squared distribution with *p* degrees of freedom

Asymptotic properties of the LR test – example

Exponential model: $X_1, X_2, ..., X_n$ are an IID sample from $Exp(\theta)$.

We test H_0 : $\theta = 1$ against H_1 : $\theta \neq 1$ $MLE(\theta) = \hat{\theta} = 1/\bar{X}$ $\tilde{\lambda} = \frac{\Pi f_{\hat{\theta}}(x_i)}{\Pi f_1(x_i)} = \frac{\frac{1}{\bar{X}^n} \exp(-\frac{1}{\bar{X}} \Sigma x_i)}{\exp(-\Sigma x_i)} = \frac{1}{\bar{X}^n} \exp(n(\bar{X} - 1))$ $\tilde{\lambda} > \tilde{c} \Leftrightarrow 2 \ln \tilde{\lambda} > 2 \ln \tilde{c}$ then: from Theorem: $2\ln \tilde{\lambda} = 2n((\bar{X} - 1) - \ln \bar{X}) \xrightarrow{D} \chi^2(1)$ for a sign. level $\alpha = 0.05$ we have $\chi^2_{0.95}(1) \approx 3.84 \approx 2 \ln \tilde{c}$ $\lambda > e^{3.84/2}$ so we reject H_0 in favor of H_1 if

Comparing two or more populations

We want to know if populations studied are "the same" in certain aspects:

- parametric tests: we check the equality of certain distribution parameters
- nonparametric tests: we check whether distributions are the same

Model I: comparison of means, variance known, significance level α

 X_1, X_2, \dots, X_{n_X} are an IID sample from distr N(μ_X, σ_X^2), $Y_1, Y_2, ..., Y_{ny}$ are an IID sample from distr N(μ_y, σ_y^2), σ_x^2 , σ_y^2 are **known**, samples are independent $H_0: \mu_x = \mu_Y \qquad U = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_X^2 / n_X + \sigma_Y^2 / n_Y}} \sim N(0,1)$ Test statistic: assuming H_0 is $H_0: \mu_x = \mu_y$ against $H_1: \mu_x > \mu_y$ true critical region $C^* = \{x : U(x) > u_{1-\alpha}\}$ $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$ critical region $C^* = \{x : |U(x)| > u_{1-\alpha/2}\}$

Model I – comparison of means. Example

 $X_1, X_2, ..., X_{10}$ are an IID sample from distr N(μ_X , 11²), $Y_1, Y_2, ..., Y_{10}$ are an IID sample from distr N(μ_Y , 13²) Based on the sample:

$$\bar{X} = 501, \bar{Y} = 498$$

Are the means equal, for significance level 0.05? $H_0: \mu_x = \mu_Y$ against $H_1: \mu_x \neq \mu_Y$ $U = \frac{501 - 498}{\sqrt{\frac{13^2}{10} + \frac{11^2}{10}}} \approx 0.557$

we have: $u_{0.975} \approx 1.96$.

 $|0.557| < 1.96 \rightarrow \text{no grounds to reject } H_0$

Model II: comparison of means, variance unknown but assumed equal, significance level α

 $X_1, X_2, ..., X_{nX}$ are an IID sample from distr N(μ_X, σ^2), $Y_1, Y_2, ..., Y_{nY}$ are an IID sample from distr N(μ_Y, σ^2) with σ^2 **unknown**, samples are independent

$$\begin{split} H_{0}: & \mu_{X} = \mu_{Y} \text{ Test statistic:} \\ T &= \frac{\bar{x} - \bar{y}}{\sqrt{(n_{x} - 1)S_{x}^{2} + (n_{Y} - 1)S_{Y}^{2}}} \sqrt{\frac{n_{x}n_{y}}{n_{x} + n_{Y}}} (n_{x} + n_{Y} - 2) \sim t (n_{x} + n_{Y} - 2) \\ H_{0}: & \mu_{x} = \mu_{Y} \text{ against } H_{1}: \\ \mu_{x} > \mu_{Y} & \text{true} \\ \text{critical region} & C^{*} = \{x : T(x) > t_{1-\alpha}(n_{x} + n_{y} - 2)\} \\ H_{0}: & \mu_{x} = \mu_{Y} \text{ against } H_{1}: \\ \mu_{x} \neq \mu_{Y} \\ \text{critical region} & C^{*} = \{x : |T(x)| > t_{1-\alpha/2}(n_{x} + n_{y} - 2)\} \end{split}$$

$$S_X^2 = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (X_i - \bar{X})^2, S_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$$

Model II: comparison of means, variance unknown but assumed equal, cont.

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{(n_x - 1)S_X^2 + (n_Y - 1)S_Y^2}} \sqrt{\frac{n_X n_Y}{n_X + n_Y}} (n_X + n_Y - 2) \sim t (n_X + n_Y - 2)$$

can be rewritten as

$$T = \frac{\bar{X} - \bar{Y}}{S_* \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \sim t (n_X + n_Y - 2)$$

where $S_*^2 = \frac{(n_x - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_x + n_y - 2}$

is an estimator of the variance σ^2 based on the two samples

Model II: comparison of variances, significance level α

 $X_1, X_2, ..., X_{n_X}$ are an IID sample from distr N(μ_X, σ_X^2), $Y_1, Y_2, ..., Y_{n_y}$ are an IID sample from distr N(μ_y, σ_y^2), σ_X^2 , σ_Y^2 are **unknown**, samples are independent $F = \frac{S_X^2}{S_Y^2} \sim F(n_X - 1, n_Y - 1)$ $H_0: \sigma_X = \sigma_Y$ **Test statistic:** assuming H_0 is $H_0: \sigma_X = \sigma_Y$ against $H_1: \sigma_X > \sigma_Y$ true critical region $C^* = \{x : F(x) > F_{1-\alpha}(n_x - 1, n_y - 1)\}$ $H_0: \sigma_X = \sigma_Y$ against $H_1: \sigma_X \neq \sigma_Y$ critical region $C^* = \{x : F(x) < F_{\alpha/2}(n_X - 1, n_Y - 1)\}$ $\vee F(x) > F_{1-\alpha/2}(n_X - 1, n_Y - 1)$

Faculty of Economic Science

 $S_X^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_X} (X_i - \bar{X})^2, S_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$

Model II: comparison of means, variances unknown and no equality assumption

 $X_1, X_2, ..., X_{nX}$ are an IID sample from distr N(μ_X, σ_X^2), Y₁, Y₂, ..., Y_{nY} are an IID sample from distr N(μ_Y, σ_Y^2), σ_X^2, σ_Y^2 are **unknown**, samples independent H₀: $\mu_x = \mu_Y$

The test statistic would be very simple, but:

$$\frac{\bar{X} - \bar{Y}}{\left|\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}\right|} \sim ??$$

It isn't possible to design a test statistic such that the distribution does not depend on σ_X^2 and σ_Y^2 (values)...

$$S_X^2 = \frac{1}{n_X - 1} \sum_{i=1}^{n_X} (X_i - \bar{X})^2, S_Y^2 = \frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$$

Model III: comparison of means for large samples, significance level α

 $X_1, X_2, ..., X_{n_X}$ are an IID sample from distr. with mean μ_X , Y_1, Y_2, \dots, Y_{nY} are an IID sample from distr. with mean μ_Y , both distr. have unknown variances, samples are independent, n_{χ} , n_{γ} – large. $U = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \sim N(0,1)$ $A_{N_N} = \frac{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \qquad \text{assuming } H_{0.} \text{ is true, for large}$ $H_0: \mu_x = \mu_y$ Test statistic: $H_0: \mu_x = \mu_y$ against $H_1: \mu_x > \mu_y$ samples critical region $C^* = \{x : U(x) > u_{1-\alpha}\}$ approximately $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$ critical region

 $C^* = \{x : |U(x)| > u_{1-\alpha/2}\}$

 $S_X^2 = \frac{1}{n_y - 1} \sum_{i=1}^{n_X} (X_i - \bar{X})^2, S_Y^2 = \frac{1}{n_y - 1} \sum_{i=1}^{n_Y} (Y_i - \bar{Y})^2$

Model III – example (equality of means?)

167 students take part in a probability calculus exam. Is attending lectures profitable? ($\alpha = 0.05$)

Among those, who participated 3 times (93 students):

mean = 3, variance = 0.70;

Among those, who participated less than 3 times (74 students): mean = 2.72, variance = 0.69.

Value of the test statistic

$$U = \frac{3 - 2.72}{\sqrt{0.70/93 + 0.69/74}} \approx 2.13$$

Model IV: comparison of fractions for large samples, significance level α

Two IID samples from two-point distributions. X – number of successes in n_X trials with prob of success p_X , Y – number of successes in n_Y trials with prob of success p_Y . p_X and p_Y unknown, n_X and n_Y large.

$$H_{0}: p_{X} = p_{Y}$$
Test statistic:
$$U^{*} = \frac{\frac{X}{n_{X}} - \frac{Y}{n_{Y}}}{\sqrt{p_{*}(1 - p_{*})\left(\frac{1}{n_{X}} + \frac{1}{n_{Y}}\right)}} \sim N(0,1)$$
assuming H_{0} is true, for large samples approximately critical region
$$C^{*} = \{x : U^{*}(x) > u_{1-\alpha}\}$$

$$H_{0}: p_{X} = p_{Y} \text{ against } H_{1}: p_{X} \neq p_{Y}$$
critical region
$$C^{*} = \{x : |U^{*}(x)| > u_{1-\alpha/2}\}$$

Model IV – example (equality of probabilities?)

167 students take part in a probability calculus exam. Is attending lectures profitable? ($\alpha = 0.05$)

Among those, who participated 3 times (93 students): 64 passed (68.8%);

Among those, who participated less than 3 times (74 students): 36 passed (48.6%).

Value of the test statistic

$$U = \frac{0.688 - 0.486}{\sqrt{100/_{167} \cdot \frac{67}{_{167}} \cdot \left(\frac{1}{_{93}} + \frac{1}{_{74}}\right)}} \approx 2,55$$

A naive approach:

pairwise tests for all pairs

But:

in this case, the type I error is higher than the significance level assumed for each simple test...

Assume we have *k* samples:

$$X_{1,1}, X_{1,2}, \dots, X_{1,n_1}, X_{2,1}, X_{2,2}, \dots, X_{2,n_2},$$

$$X_{k,1}, X_{k,2}, \dots, X_{k,n_k}$$
 , and

- all $X_{i,j}$ are independent ($i=1,...,k, j=1,..., n_i$)
- $X_{i,j} \sim N(m_i, \sigma^2)$
- we do not know $m_1, m_2, ..., m_k$, nor σ^2

A 🛞

let
$$n = n_1 + n_2 + ... + n_k$$

Test of the Analysis of Variance (ANOVA) for significance level α

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

$$H_1: \neg H_0 \quad \text{(i.e. not all } \mu_i \text{ are equal)}$$

$$A \text{ LR test; we get a test statistic:}$$

$$F = \frac{\sum_{i=1}^k n_i (\bar{X}_i - \bar{X})^2 / (k - 1)}{\sum_{i=1}^k \sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_i)^2 / (n - k)} \sim F(k - 1, n - k)$$

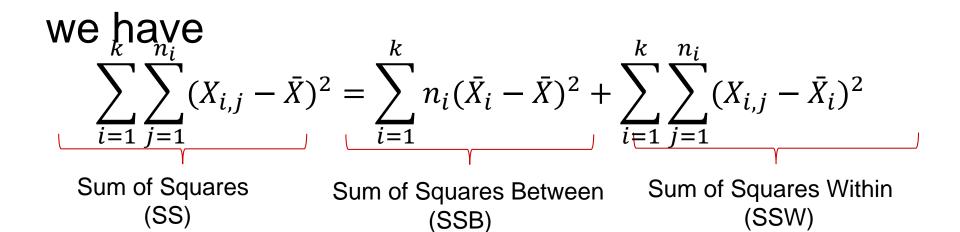
with critical region

$$C^* = \{x : F(x) > F_{1-\alpha}(k-1, n-k)\}$$

$$\bar{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{i,j}, \bar{X} = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} X_{i,j} = \frac{1}{n} \sum_{i=1}^k n_i \bar{X}_i$$

for k=2 the ANOVA is equivalent to the two-sample t-test.

ANOVA – interpretation



$$\frac{1}{k-1} \sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X})^2 - \text{between group variance estimator}$$
$$\frac{1}{n-k} \sum_{i=1}^{i=1} \sum_{j=1}^{n_i} (X_{i,j} - \bar{X}_i)^2 - \text{within group variance estimator}$$

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	SSB	k-1	
within groups	SSW	n-k	
total	SS	n-1	F

ANOVA test – example

Yearly chocolate consumption in three cities: *A*, *B*, *C* based on random samples of $n_A = 8$, $n_B = 10$, $n_C = 9$ consumers. Does consumption depend on the city?

	А	В	С
sample mean	11	10	7
sample variance	3.5	2.8	3

α=0.01

$$\bar{X} = \frac{1}{27} (11 \cdot 8 + 10 \cdot 10 + 7 \cdot 9) = 9.3$$

$$SSB = (11 - 9.3)^2 \cdot 8 + (10 - 9.3)^2 \cdot 10 + (7 - 9.3)^2 \cdot 9 = 75.63$$

$$SSW = 3.5 \cdot 7 + 2.8 \cdot 9 + 3 \cdot 8 = 73.7$$

$$F = \frac{75.63/2}{73.7/24} \approx 12.31 \text{ and } F_{0.99}(2,24) \approx 5.61$$

$$\rightarrow \text{ reject } H_0 \text{ (equality of means),}$$

$$\text{consumption depends on city}$$

source of variability	sum of squares	degrees of freedom	value of the test statistic F
between groups	75.63	2	
within groups	73.7	24	
total	149.33	26	12.31

