Mathematical Statistics

Anna Janicka

Lecture XI, 17.05.2021

HYPOTHESIS TESTING III: LR TEST FOR COMPOSITE HYPOTHESES EXAMPLES OF ONE-SAMPLE TESTS

Plan for today

- 1. LR test for composite hypotheses
- 2. Examples of LR tests:
 - Model I: One- and two-sided tests for the mean in the normal model, σ^2 known
 - Model II: One- and two-sided tests for the mean in the normal model, σ^2 unknown
 - + One- and two-sided tests for the variance
 - Model III: Tests for the mean, large samples
 - Model IV: Tests for the fraction, large samples

WARSAW UNIVERSITY Faculty of Economic Sciences

Testing simple hypotheses – reminder

We observe *X*. We want to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.

(two simple hypotheses)

We can write it as:

 $H_0: X \sim f_0$ against $H_1: X \sim f_1$,

where f_0 and f_1 are *densities* of distributions defined by θ_0 and θ_1 (i.e. P_0 and P_1)

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma – reminder

$$\begin{array}{l} H_0: X \sim f_0 \text{ against } H_1: X \sim f_1 \\ \text{Let} \\ C^* = \left\{ x \in \mathbf{X} : \frac{f_1(x)}{f_0(x)} > c \right\} \\ \text{such that } P_0(C^*) = \alpha \quad \text{and} \quad P_1(C^*) = 1 - \beta \\ \text{Then, for any } C \subseteq \mathcal{X} : \\ \text{ if } P_0(C) \leq \alpha, \text{ then } P_1(C) \leq 1 - \beta. \end{array}$$

(i.e.: the test with critical region C^* is the most powerful test for testing H_0 against H_1)

Neyman-Pearson Lemma – Example 1 reminder

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), σ^2 is known

The most powerful test for

$$H_0: \mu = 0$$
 against $H_1: \mu = 1.$

At significance level α :

$$C^* = \left\{ (x_1, x_2, \dots, x_n) : \overline{X} > \frac{u_{1-\alpha}\sigma}{\sqrt{n}} \right\}$$
 If we had

$$H_0$$
: $\mu = 0$ against H_1 : $\mu = -1$, then

Warsaw University Faculty of Economic Sciences

 $C_1^* = \left\{ (x_1, x_2, \dots, x_n) : \bar{X} < \frac{u_{1-\alpha}\sigma}{2} \right\}$

Neyman-Pearson Lemma – Example 1 cont.

Power of the test

$$P_1(C^*) = P\left(\bar{X} > \frac{1.645\sigma}{\sqrt{n}} \mid \mu = 1\right) = \dots$$
$$= 1 - \Phi\left(1.645 - \frac{\mu_1 \cdot \sqrt{n}}{\sigma}\right) \approx 0.91$$

If we change α , μ_1 , n – the power of the test....

Warsaw University Faculty of Economic Sciences

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for H_1 : $\mu > 0$ and for H_0 : $\mu \le 0$ against H_1 : $\mu > 0$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing

$$H_0$$
: $\mu \le \mu_0$ against H_1 : $\mu > \mu_0$

Note the change of direction of the inequality in the condition when testing

$$H_0: \mu \ge \mu_0$$
 against $H_1: \mu < \mu_0$

Neyman-Pearson Lemma – Example 2

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from distr $exp(\lambda)$, n = 10.

MP test for

$$H_0: \lambda = \frac{1}{2}$$
 against $H_1: \lambda = \frac{1}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

A 🛞

 $\exp(\lambda) = \Gamma(1, \lambda) \quad \Gamma(a, \lambda) + \Gamma(b, \lambda) = \Gamma(a + b, \lambda) \quad \Gamma(\frac{n}{2}, \frac{1}{2}) = \chi^2(n)$

Neyman-Pearson Lemma – Example 2'

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from distr $exp(\lambda)$, n = 10.

MP test for

$$H_0: \lambda = \frac{1}{2}$$
 against $H_1: \lambda = \frac{3}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8: $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

Faculty of Economic Sciences

 $\exp(\lambda) = \Gamma(1,\lambda) \quad \Gamma(a,\lambda) + \Gamma(b,\lambda) = \Gamma(a+b,\lambda) \quad \Gamma(\frac{n}{2},\frac{1}{2}) = \chi^2(n)$

Example 2 cont.

The test
$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

is UMP for H_0 : $\lambda \ge \frac{1}{2}$ against H_1 : $\lambda < \frac{1}{2}$

The test

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$
is UMP for H_0 : $\lambda \le \frac{1}{2}$ against H_1 : $\lambda > \frac{1}{2}$

WARSAW UNIVERSITY Faculty of Economic Sciences

Likelihood ratio test for composite hypotheses

 $\begin{aligned} X \sim P_{\theta}, \{ \mathsf{P}_{\theta} \colon \theta \in \Theta \} - \text{family of distributions} \\ \text{We are testing } H_0 \colon \theta \in \Theta_0 \text{ against } H_1 \colon \theta \in \Theta_1 \\ \text{ such that } \Theta_0 \cap \Theta_1 = \emptyset, \, \Theta_0 \cup \Theta_1 = \Theta \\ \text{Let} \end{aligned}$

$$H_0: X \sim f_0(\theta_0, \cdot) \text{ for some } \theta_0 \in \Theta_{0.}$$
$$H_1: X \sim f_1(\theta_1, \cdot) \text{ for some } \theta_1 \in \Theta_1,$$

where f_0 and f_1 are densities (for $\theta \in \Theta_0$ and $\theta \in \Theta_1$, respectively)

× 🖗

Warsaw University Faculty of Economic Science

Just like in the N-P Lemma, but models are statistic – contain unknow parameters. We proceed similarly.

Likelihood ratio test for composite hypotheses – cont.

Test statistic:
$$\lambda = \frac{\sup_{\theta_1 \in \Theta_1} f_1(\theta_1, X)}{\sup_{\theta_0 \in \Theta_0} f_0(\theta_0, X)}$$

or
$$\lambda = \frac{f_1(\hat{\theta}_1, X)}{f_0(\hat{\theta}_0, X)}$$

where $\hat{\theta}_0, \hat{\theta}_1$ are MLE for the null and alternative hypothesis models

We reject H_0 if $\lambda > c$ for a constant c(determined according to significance level)

Likelihood ratio test for composite hypotheses – justification

Just like in the Neyman-Pearson Lemma, we compare the "highest chance of obtaining observation *X*, when the alternative is true" to the "highest chance of obtaining observation *X*, when the null is true"; we reject the null hypothesis in favor of the alternative if this ratio is very unfavorable for the null.

Likelihood ratio test for composite hypotheses – alternative version

Test statistic:
$$\tilde{\lambda} = \frac{\sup_{\theta \in \Theta} f(\theta, X)}{\sup_{\theta_0 \in \Theta_0} f_0(\theta_0, X)}$$

or
$$\tilde{\lambda} = \frac{f(\hat{\theta}, X)}{f_0(\hat{\theta}_0, X)}$$

where $\hat{\theta}, \hat{\theta}_0$ are the ML estimators for the model without restrictions and for the null model, respectively.

We reject H_0 if $\tilde{\lambda} > \tilde{c}$ for a constant \tilde{c} .

Warsaw University Faculty of Economic Sciences

Likelihood ratio test for composite hypotheses – properties

For some models with composite hypotheses the UMPT *does not exist* (so the LR test will not be UMP because there is no such test)

e.g. testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$ if the family of distributions has a *monotonic LR property*, i.e. $f_1(x)/f_0(x)$ is an increasing function of a statistic T(x) for any f_0 and f_1 corresponding to parameters $\theta_0 < \theta_1$.

In order to have UMPT for H_0 : $\theta = \theta_0$ against H_1 : $\theta > \theta_0$ we would need a critical region of the type T(x)>c, and to have a UMPT for H_0 : $\theta = \theta_0$ against H_1 : $\theta < \theta_0$ we would need a critical region of the type T(x) < c, so it is impossible to find a UMPT for H_1 : $\theta \neq \theta_0$.

Likelihood ratio test: special cases

The exact form of the test depends on the distribution.

In many cases, finding the distribution is hard/complicated (in many such cases, we use the asymptotic properties of the LR test instead of precise formulae)

*x*_{something} **always** means a quantile of rank something

Warsaw University Faculty of Economic Sciences

Model I: comparing the mean

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), where σ^2 is **known**

*H*₀:
$$\mu = \mu_0$$

Test statistic: $U = \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n} \sim N(0,1)$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu > \mu_{0}$$

critical region $C^{*} = \{x : U(x) > u_{1-\alpha}\}$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu < \mu_{0}$$

critical region $C^{*} = \{x : U(x) < u_{\alpha} = -u_{1-\alpha}\}$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu \neq \mu_{0}$$

critical region $C^{*} = \{x : |U(x)| > u_{1-\alpha/2}\}$

culty of Economic Sciences

Let X_1, X_2, \dots, X_{10} be an IID sample from N(μ , 1²): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is $\mu = 0$? (for $\alpha = 0.05$) In the sample: mean = -0.43, variance = 0.92 $U = \frac{-0.43 - 0}{1}\sqrt{10} \approx -1.36$ Test statistic: $H_0: \mu = 0$ against $H_1: \mu \neq 0$, $u_{0.975} \approx 1.96$ (p-value ≈ 0.172) $H_0: \mu = 0$ against $H_1: \mu < 0$, $u_{0.05} \approx -1.64$ (p-value ≈ 0.086) $H_0: \mu = 0$ against $H_1: \mu > 0$, $u_{0.95} \approx 1.64$ (p-value ≈ 0.914) \rightarrow in none of these cases are there grounds to reject H_0 for $\alpha = 0.05$

 \rightarrow but we would reject H_0 : $\mu = 0$ in favor of H_1 : $\mu < 0$ for $\alpha = 0.1$

Model II: comparing the mean

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), where σ^2 is **unknown**

*H*₀:
$$\mu = \mu_0$$

Test statistic: $T = \frac{\bar{X} - \mu_0}{S} \sqrt{n} \sim t (n - 1)$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu > \mu_{0}$$
critical region
$$C^{*} = \{x:T(x) > t_{1-\alpha}(n-1)\}$$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu < \mu_{0}$$
critical region
$$C^{*} = \{x:T(x) < t_{\alpha}(n-1)\}$$

$$H_{0}: \mu = \mu_{0} \text{ against } H_{1}: \mu \neq \mu_{0}$$
critical region
$$C^{*} = \{x:|T(x)| > t_{1-\alpha/2}(n-1)\}$$

$$\bigotimes \bigoplus = t_{\alpha}(n-1) = -t_{1-\alpha}(n-1)$$

Let $X_1, X_2, ..., X_{10}$ be an IID sample from N(μ, σ^2): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is $\mu = 0$? (for $\alpha = 0.05$) In the sample: mean = -0.43, variance = 0.92 $U = \frac{-0.43 - 0}{\sqrt{0.92}} \sqrt{10} \approx -1.42$ Test statistic: $H_0: \mu = 0 \text{ vs } H_1: \mu \neq 0, t_{0.975}(9) \approx 2.26 \text{ (p-value } \approx 0.188)$ $H_0: \mu = 0 \text{ vs } H_1: \mu < 0, t_{0.05}(9) \approx -1.83 \text{ (p-value } \approx 0.094\text{)}$ $H_0: \mu = 0 \text{ vs } H_1: \mu > 0, t_{0.95} (9) \approx 1.83 \text{ (p-value } \approx 0.906)$ \rightarrow in none of these cases are there grounds to reject H_0 for $\alpha = 0.05$

 \rightarrow but we would reject H_0 : $\mu = 0$ in favor of H_1 : $\mu < 0$ for $\alpha = 0.1$

Model II: comparing the variance

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), where σ^2 is **unknown**

*H*₀:
$$\sigma = \sigma_0$$

Test statistic: $\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$

 $\begin{array}{l} H_0: \ \sigma = \sigma_0 \text{ against } H_1: \ \sigma > \sigma_0 \\ \text{ critical region } & \mathcal{C}^* = \{x : \chi^2(x) > \chi^2_{1-\alpha}(n-1)\} \\ H_0: \ \sigma = \sigma_0 \text{ against } H_1: \ \sigma < \sigma_0 \\ \text{ critical region } & \mathcal{C}^* = \{x : \chi^2(x) < \chi^2_{\alpha}(n-1)\} \\ H_0: \ \sigma = \sigma_0 \text{ against } H_1: \ \sigma \neq \sigma_0 \\ \text{ critical region } & \mathcal{C}^* = \{x : \chi^2(x) < \chi^2_{\alpha/2}(n-1)\} \\ \end{array}$

Let $X_1, X_2, ..., X_{10}$ be an IID sample from N(μ, σ^2): -1.21 -1.37 0.51 0.37 -0.75 0.44 1.20 -0.96 -1.14 -1.40 Is $\sigma = 1$? (for $\alpha = 0.05$) In the sample: variance = $0.92_{9.0.92}$ $\chi^2 = \frac{1}{1} \approx 8.28$ **Test statistic:** $\chi^2_{0.95} \approx 16.92$ H_0 : $\sigma = 1$ against H_1 : $\sigma > 1$ H_0 : $\sigma = 1$ against H_1 : $\sigma < 1$ $\chi^2_{0.05} \approx 3.33$ $H_0: \sigma = 1$ against $H_1: \sigma \neq 1$ $\chi^2_{0\,025} \approx 2.70$; $\chi^2_{0\,975} \approx 19.02$

Model III: comparing the mean

Asymptotic model: X_1 , X_2 , ..., X_n are an IID sample from a distribution with mean μ and variance (unknown), n – large.

$$H_0: \mu = \mu_0$$

Test statistic: $T = \frac{\bar{X} - \mu_0}{S} \sqrt{n}$

has, for large *n*, an approximate distribution N(0,1) $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ critical region $C^* = \{x: T(x) > u_{1-\alpha}\}$ $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$ critical region $C^* = \{x: T(x) < u_\alpha = -u_{1-\alpha}\}$ $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ $C^* = \{x: |T(x)| > u_{1-\alpha/2}\}$

Model IV: comparing the fraction

Asymptotic model: $X_1, X_2, ..., X_n$ are an IID sample from a two-point distribution, n - large.

$$P_p(X = 1) = p = 1 - P_p(X = 0)$$

 $H_0: p = p_0$ $\begin{array}{ll} \Pi_{0} & \mu = \mu_{0} \\ \text{Test statistic:} & U^{*} = \frac{X - p_{0}}{\sqrt{p_{0}(1 - p_{0})}} \sqrt{n} = \frac{\hat{p} - p_{0}}{\sqrt{p_{0}(1 - p_{0})}} \sqrt{n} \end{array}$ has an approximate distribution N(0,1) for large n H_0 : $p = p_0$ against H_1 : $p > p_0$ $C^* = \{x : U^*(x) > u_{1-\alpha}\}$ critical region H_0 : $p = p_0$ against H_1 : $p < p_0$ critical region $\check{C}^* = \{x : U^*(x) < u_{\alpha} = -u_{1-\alpha}\}$ H_{0} : $p = p_{0}$ against H_{1} : $p \neq p_{0}$ $C^* = \{x : |U^*(x)| > u_{1-\alpha/2}\}$ 🖉 🍚 critical region

We toss a coin 400 times. We get 180 heads. Is the coin symmetric?

*H*₀:
$$p = \frac{1}{2}$$
 $U^* = \frac{(180/400 - 1/2)}{\sqrt{1/2(1 - 1/2)}}\sqrt{400} = -2$

for $\alpha = 0.05$ and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.975} = 1.96 \rightarrow$ we reject H_0 for $\alpha = 0.05$ and H_1 : $p < \frac{1}{2}$ we have $u_{0.05} = -u_{0.95} = -1.64$ \rightarrow we reject H_0 for $\alpha = 0.01$ and H_1 : $p \neq \frac{1}{2}$ we have $u_{0.995} = 2.58$ \rightarrow we do not reject H_0 for $\alpha = 0.01$ and H_1 : $p < \frac{1}{2}$ we have $u_{0.01} = -u_{0.99} = -2.33$ \rightarrow we do not reject H_0

value for $H_1: p \neq \frac{1}{2}: 0.044$

p-value for H_1 : $p < \frac{1}{2}$: 0.022

WARSAW UNIVERSITY Faculty of Economic Sciences