Mathematical Statistics

Anna Janicka

Lecture X, 9.05.2021

HYPOTHESIS TESTING II:
COMPARING TESTS

Plan for Today

- Definitions reminder and supplement
- 1. Comparing tests
- 2. Uniformly Most Powerful Test
- Likelihood ratio test: Neyman-Pearson Lemma
- Examples of tests for simple hypotheses and generalizations

Definitions – reminder

We are testing H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$

C – critical region of the test, the set of outcomes for which we reject H_0 , $C = \{x \in \mathcal{X} : \delta(x) = 1\}$

The test has a **significance level** α , if for any $\theta \in \Theta_0$ we have $P_{\theta}(C) \leq \alpha$.

	In reality we have		
decision	H_0 true	H_0 false	
reject H ₀	Type I error	OK	
do not reject H_0	OK	Type II error	

Statistical test – example (is the coin symmetric?) Finding the critical range for H_0 : $p = \frac{1}{2}$ v H_1 : $p \neq \frac{1}{2}$

Taking significance level $\alpha = 0.01$

We look for c such that (assuming $p=\frac{1}{2}$)

$$P(|X-200| > c) = 0.01$$

From the de Moivre-Laplace theorem for la

for large n!

$$P(|X-200| > c) \approx 2 \Phi(-c/10)$$
, to get

= 0.01 we need $c \approx 25.8$

For a significance level <u>approximately</u> 0.01 we reject H_0 : $p=\frac{1}{2}$ when the number of tails is lower than 175 or higher than 225

Statistical test – example cont. (2). p-value

Slightly different question: what if the number of tails were 220 (T = 20)?

We have:

$$P_{\frac{1}{2}}(|X-200|>20)\approx0.05$$

p-value: probability of type I error, if the value of the test statistic obtained was the critical value

So: p-value for T = 20 is approximately 0.05

p-value

p-value – probability of obtaining results at least as extreme as the ones obtained (contradicting the null at least as much as those obtained)

decisions:

- \blacksquare p-value < α reject the null hypothesis
- p-value ≥ α no grounds to reject the null hypothesis

Statistical test – example cont. (3) The choice of the alternative hypothesis

For a different alternative...

For example, we lose if tails appear too often.

- $\Box H_0: p = \frac{1}{2}, \quad H_1: p > \frac{1}{2}$
- \square Which results would lead to rejecting H_0 ?
 - \blacksquare X 200 \leq c = do not reject H_{0}
 - \blacksquare X 200 > c reject H_0 in favor of H_1 .

i.e.
$$T(x) = x - 200$$

we could have H_0 : $p \le \frac{1}{2}$

Statistical test – example cont. (4) The choice of the alternative hypothesis

Again, from the de Moivre – Laplace theorem:

$$P_{\frac{1}{2}}(X-200>c)\approx 0.01$$
 for $c\approx 23.3$, so for a significance level 0.01 we reject

 H_0 : $p = \frac{1}{2}$ in favor of H_1 : $p > \frac{1}{2}$ if the number of tails is at least 224

What if we got 220 tails? p-value is equal to \approx 0.025; do not reject H_0

Power of the test (for an alternative hypothesis)

 $P_{\theta}(C)$ for $\theta \in \Theta_1$ – power of the test (for an alternative hypothesis)

Function of the power of a test:

$$1-\beta: \Theta_1 \rightarrow [0,1]$$
 such that $1-\beta(\theta) = P_{\theta}(C)$

Usually: we look for tests with a given level of significance and the highest power possible.

Statistical test – example cont. Power of the test

□ We test H_0 : $p = \frac{1}{2}$ against H_1 : $p = \frac{3}{4}$ with: T(x) = X - 200, $C = \{T(x) > 23.3\}$ (i.e. for a significance level $\alpha = 0.01$)

Power of the test:

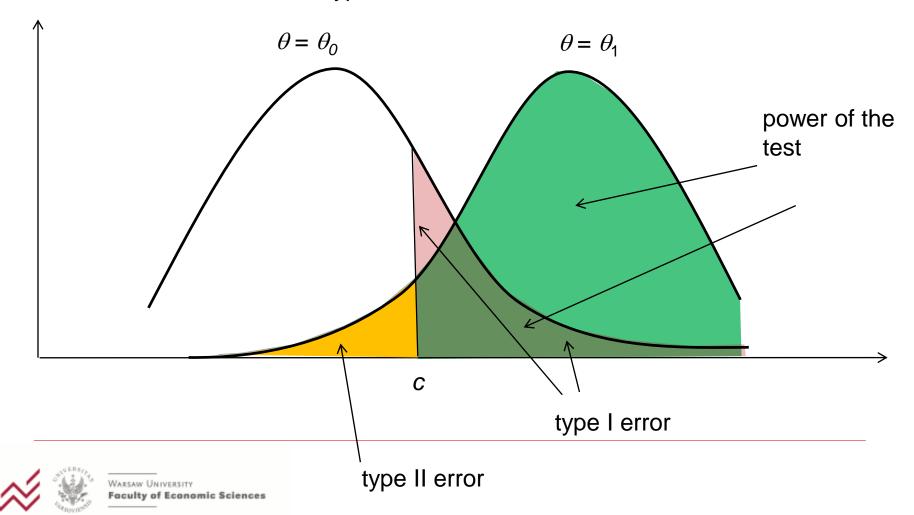
$$1-\beta (\frac{3}{4}) = P(T(x) > 23.3 \mid p = \frac{3}{4}) = P_{\frac{3}{4}} (X > 223.3)$$
$$\approx 1-\Phi((223.3-300)/5\sqrt{3}) \approx \Phi(8.85) \approx 1$$

- □ But if H_1 : p = 0.55
- 1-β (0.55) = $P(T(x) > 23.3 \mid p = 0.55) \approx 1$ -Φ(0.33) ≈ 1-0.63 ≈ 0.37
- \square And if $H_1: p = \frac{1}{4}$ for the same T we would get

$$1-\beta \left(\frac{1}{4}\right) = P(T(x) > 23.3 \mid p = \frac{1}{4}) \approx 1-\Phi(14.23) \approx 0$$

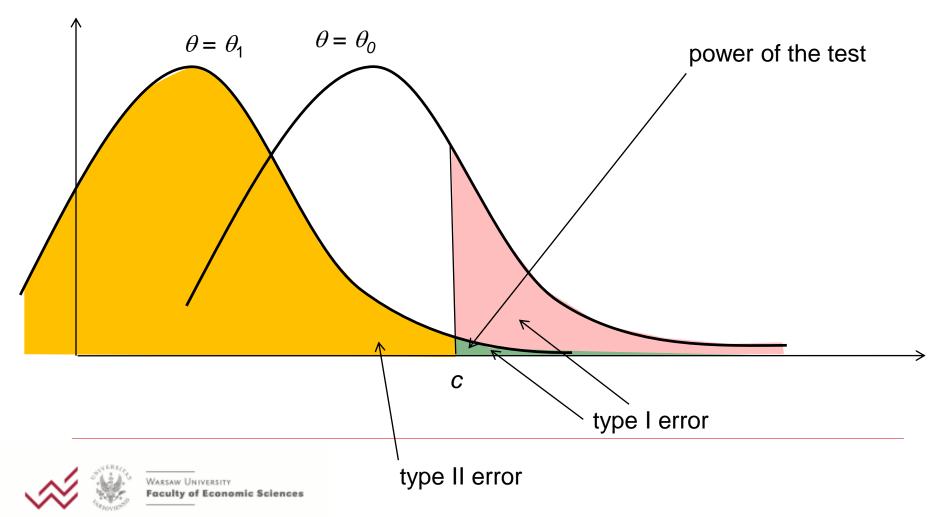
Power of the test: Graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true



Power of the test: Graphical interpretation (2) – a very bad test

distributions of the test statistic T assuming that the null and alternative hypotheses are true



Sensitivity and specificity

Specificity – true negative rate (when in reality H_0 is not true)

Sensitivity – *true positive rate* (when in reality H_0 is true)

terms used commonly in diagnostic tests (H_0) is having a medical condition

Sensitivity and specificity – example

Performance of a coronavirus IgM serological

test

	Infected (null is true)	Not infected (null is false)	Overall nuber of cases
Positive test result	17	2 (Type II error)	19
Negative test result (reject null)	3 (Type I error)	48	51
Overall	20	50	70

Sensitivity: 17/20 = 85%

Specificity: 48/50 = 96%

Size of a test

sometimes we also look at the size of a test:

$$\sup_{\theta \in \Theta_0} P_{\theta}(C)$$

then we have:

significance level = α if the size of the test does not exceed α .

Comparing tests

How do we chose the best test?

- for given null and alternative hypotheses
- for a given significance level

→ the test which is *more powerful* is better

Comparing the power of tests

 $X \sim P_{\theta}$, $\{P_{\theta} : \theta \in \Theta\}$ – family of distributions

We test H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$

such that $\Theta_0 \cap \Theta_1 = \emptyset$

with two tests with critical regions C_1 and C_2 ; both at significance level α .

The test with the critical region C_1 is **more** powerful than the test with critical region C_2 , if

$$\forall \theta \in \Theta_1 : P_{\theta}(C_1) \ge P_{\theta}(C_2)$$

and
$$\exists \theta_1 \in \Theta_1 : P_{\theta_1}(C_1) > P_{\theta_1}(C_2)$$

Uniformly most powerful test

For given H_0 : $\theta \in \Theta_0$ and H_1 : $\theta \in \Theta_1$:

- δ^* is a **uniformly most powerful test** (UMPT) at significance level α , if
- 1) δ^* is a test at significance level α ,
- 2) for any test δ at significance level α , we have, for any $\theta \in \Theta_1$:

$$P_{\theta}(\delta^*(X)=1) \geq P_{\theta}(\delta(X)=1)$$

i.e. the power of the test δ^* is not smaller than the power of any other test of the same hypotheses, for any $\theta \in \Theta_1$

if Θ_1 has one element, the word *uniform* is redundant

Uniformly most powerful test – alternative form

For given H_0 : $\theta \in \Theta_0$ and H_1 : $\theta \in \Theta_1$:

- A test with critical region C^* is a **uniformly most powerful test** (UMPT) at significance level α , if
- 1) The test with critical region C^* is a test at significance level α , i.e.

for any
$$\theta \in \Theta_0$$
: $P_{\theta}(C^*) \leq \alpha$,

2) for any test with critical region C at significance level α , we have for any $\theta \in \Theta_1$:

$$P_{\theta}(C^*) \geq P_{\theta}(C)$$

Testing simple hypotheses

We observe X. We want to test

$$H_0$$
: $\theta = \theta_0$ against H_1 : $\theta = \theta_1$.

(two simple hypotheses)

We can write it as:

$$H_0$$
: $X \sim f_0$ against H_1 : $X \sim f_1$,

where f_0 and f_1 are densities of distributions defined by θ_0 and θ_1 (i.e. P_0 and P_1)

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma

Let
$$C^* = \left\{x \in X : \frac{f_1(x)}{f_0(x)} > c\right\}$$
 such that $P_0(C^*) = \alpha$ and $P_1(C^*) = 1 - \beta$ Then, for any $C \subseteq X$:

if
$$P_0(C) \le \alpha$$
, then $P_1(C) \le 1 - \beta$.

(i.e.: the test with critical region C^* is the most powerful test for testing H_0 against H_1)

In many cases, it is easier to write the test as

$$C^* = \{x: \ln f_1(x) - \ln f_0(x) > c_1\}$$

Likelihood ratio test: we compare the likelihood ratio to a constant; if it is bad we reject H_0

Neyman-Pearson Lemma – Example 1

Normal model: X_1 , X_2 , ..., X_n are an IID sample from N(μ , σ^2), σ^2 is known

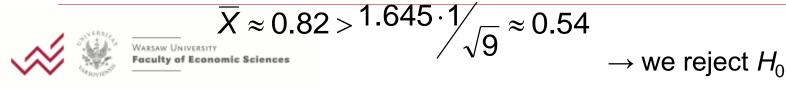
The most powerful test for

$$H_0$$
: $\mu = 0$ against H_1 : $\mu = 1$.

At significance level α :

$$C^* = \{(x_1, x_2, \dots, x_n) : \bar{X} > u_{1-\alpha}\sigma / \sqrt{n} \}$$

For obs. 1.37; 0.21; 0.33; -0.45; 1.33; 0.85; 1.78; 1.21; 0.72 from N(μ , 1) we have, for α = 0.05 :



Neyman-Pearson Lemma – Example 1 cont.

Power of the test

$$P_{1}(C^{*}) = P\left(\bar{X} > \frac{1.645\sigma}{\sqrt{n}} | \mu = 1\right) = \dots$$
$$= 1 - \Phi\left(\frac{1.645 - \mu_{1} \cdot \sqrt{n}}{\sigma}\right) \approx 0.91$$

If we change α , μ_1 , n – the power of the test....

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for H_1 : $\mu > 0$ and for

$$H_0$$
: $\mu \le 0$ against H_1 : $\mu > 0$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing

$$H_0$$
: $\mu \le \mu_0$ against H_1 : $\mu > \mu_0$

Note the change of direction in the inequality when testing

$$H_0$$
: $\mu \ge \mu_0$ against H_1 : $\mu < \mu_0$

Neyman-Pearson Lemma – Example 2

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from an $\exp(\lambda)$ distribution, n = 10.

MP test for

$$H_0$$
: $\lambda = \frac{1}{2}$ against H_1 : $\lambda = \frac{1}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8:

 $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

$$\frac{\text{Faculty of Economic Sciences}}{\text{exp}(\lambda) = \Gamma(1, \lambda)} \qquad \Gamma(a, \lambda) + \Gamma(b, \lambda) = \Gamma(a + b, \lambda) \qquad \Gamma(\frac{1}{2}, \frac{1}{2}) = \chi^{2}(n)$$

Neyman-Pearson Lemma – Example 2'

Exponential model: X_1 , X_2 , ..., X_n are an IID sample from an $\exp(\lambda)$ distribution, n = 10.

MP test for

$$H_0$$
: $\lambda = \frac{1}{2}$ against H_1 : $\lambda = \frac{3}{4}$.

At significance level $\alpha = 0.05$:

$$C^* = \left\{ (x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \right\}$$

E.g. for a sample: 2; 0.9; 1.7; 3.5; 1.9; 2.1; 3.7; 2.5; 3.4; 2.8:

 $\Sigma = 24.5 \rightarrow \text{no grounds for rejecting } H_0.$

 $\frac{\text{Faculty of Economic Sciences}}{\exp(\lambda) = \Gamma(1, \lambda)} \qquad \Gamma(a, \lambda) + \Gamma(b, \lambda) = \Gamma(a + b, \lambda) \qquad \Gamma(\frac{1}{2}, \frac{1}{2}) = \chi^2(n)$

Example 2 cont.

The test
$$C^* = \{(x_1, x_2, \dots, x_{10}) : \sum x_i > 31.41 \}$$

is UMP for H_0 : $\lambda \geq \frac{1}{2}$ against H_1 : $\lambda < \frac{1}{2}$

The test
$$C^* = \{(x_1, x_2, \dots, x_{10}) : \sum x_i < 10.85 \}$$

is UMP for H_0 : $\lambda \le \frac{1}{2}$ against H_1 : $\lambda > \frac{1}{2}$

