Mathematical Statistics
 Anna Janicka

Lecture X, 9.05.2021

HYPOTHESIS TESTING II:
COMPARING TESTS

Plan for Today

0 . Definitions - reminder and supplement

1. Comparing tests
2. Uniformly Most Powerful Test
3. Likelihood ratio test: Neyman-Pearson Lemma
4. Examples of tests for simple hypotheses and generalizations

Definitions - reminder

We are testing $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$
C - critical region of the test, the set of outcomes for which we reject $H_{0}, C=\{x \in \mathcal{X}: \delta(x)=1\}$

The test has a significance level α, if for any $\theta \in \Theta_{0}$ we have $P_{\theta}(C) \leq \alpha$.

decision	In reality we have	
	H_{0} true	H_{0} false
reject H_{0}	Type I error	OK
do not reject H_{0}	OK	Type II error

Statistical test - example (is the coin symmetric?) Finding the critical range for $H_{0}: p=1 / 2 \vee H_{1}: p \neq 1 / 2$

Taking significance level $\alpha=0.01$
We look for c such that (assuming $p=1 / 2$)

$$
P(|X-200|>c)=0.01
$$

From the de Moivre-Laplace theorem

$$
\begin{aligned}
P(|X-200|>c) & \approx 2 \Phi(-c / 10), \text { to get } \\
& =0.01 \text { we need } c \approx 25.8
\end{aligned}
$$

For a significance level approximately 0.01 we reject $H_{0}: p=1 / 2$ when the number of tails is lower than 175 or higher than 225

$$
C=\{0,1, \ldots, 174\} \cup\{226,227, \ldots, 400\}
$$

Statistical test - example cont. (2). p-value

Slightly different question: what if the number of tails were $220(T=20)$?
We have:

$$
P_{1 / 2}(|X-200|>20) \approx 0.05
$$

p-value: probability of type I error, if the value of the test statistic obtained was the critical value

So: p-value for $T=20$ is approximately 0.05

p-value

p-value - probability of obtaining results at least as extreme as the ones obtained (contradicting the null at least as much as those obtained)

decisions:

- p -value $<\alpha$ - reject the null hypothesis
- p -value $\geq \alpha$ - no grounds to reject the null hypothesis

Statistical test - example cont. (3)

 The choice of the alternative hypothesisFor a different alternative...
For example, we lose if tails appear too often.
$\square H_{0}: p=1 / 2, \quad H_{1}: p>1 / 2$
\square Which results would lead to rejecting H_{0} ?

- X - $200 \leq \mathrm{c}$ - do not reject H_{0}.
- X $200>c-$ reject H_{0} in favor of H_{1}.
i.e. $T(x)=x-200$
$H_{0}: p \leq 1 / 2$

Statistical test - example cont. (4)
The choice of the alternative hypothesis
Again, from the de Moivre - Laplace theorem:

$$
P_{1 / 2}(X-200>c) \approx 0.01 \text { for } c \approx 23.3
$$

so for a significance level 0.01 we reject
$H_{0}: p=1 / 2$ in favor of $H_{1}: p>1 / 2$ if the number of tails is at least 224

What if we got 220 tails?
p -value is equal to ≈ 0.025; do not reject H_{0}

Power of the test (for an alternative hypothesis)

$P_{\theta}(C)$ for $\theta \in \Theta_{1}$ - power of the test (for an alternative hypothesis)
Function of the power of a test:

$$
1-\beta: \Theta_{1} \rightarrow[0,1] \text { such that } 1-\beta(\theta)=\mathrm{P}_{\theta}(C)
$$

Usually: we look for tests with a given level of significance and the highest power possible.

Statistical test - example cont.
 Power of the test

\square We test $H_{0}: p=1 / 2$ against $H_{1}: p=3 / 4$ with: $T(x)=\mathrm{X}-200, \mathrm{C}=\{T(x)>23.3\}$
(i.e. for a significance level $\alpha=0.01$)

Power of the test:

$$
\begin{aligned}
& 1-\beta(3 / 4)=P(T(x)>23.3 \mid p=3 / 4)=P_{3 / 4}(X>223.3) \\
& \quad \approx 1-\Phi((223.3-300) / 5 \sqrt{ } 3) \approx \Phi(8.85) \approx 1
\end{aligned}
$$

\square But if $H_{1}: p=0.55$
$1-\beta(0.55)=P(T(x)>23.3 \mid p=0.55) \approx 1-\Phi(0.33) \approx 1-$ $0.63 \approx 0.37$
\square And if $H_{1}: p=1 / 4$ for the same T we would get

$$
1-\beta(1 / 4)=P(T(x)>23.3 \mid p=1 / 4) \approx 1-\Phi(14.23) \approx 0
$$

Power of the test: Graphical interpretation (1)

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Power of the test: Graphical interpretation (2) - a very bad test

distributions of the test statistic T assuming that the null and alternative hypotheses are true

Sensitivity and specificity

Specificity - true negative rate (when in reality H_{0} is not true)

Sensitivity - true positive rate (when in reality H_{0} is true)
terms used commonly in diagnostic tests
(H_{0} is having a medical condition)

Sensitivity and specificity - example

Performance of a coronavirus IgM serological test

	Infected (null is true)	Not infected (null is false)	Overall nuber of cases
Positive test result	17	2 (Type II error)	19
Negative test result (reject null)	3 (Type I error)	48	51
Overall	20	50	70

Sensitivity: $17 / 20=85 \%$ Specificity: $48 / 50=96 \%$

Size of a test

sometimes we also look at the size of a test:
$\sup _{\theta \in \Theta_{0}} P_{\theta}(C)$
then we have: significance level $=\alpha$ if the size of the test does not exceed α.

Comparing tests

How do we chose the best test?
\square for given null and alternative hypotheses
\square for a given significance level
\rightarrow the test which is more powerful is better

Comparing the power of tests

$X \sim P_{\theta},\left\{\mathrm{P}_{\theta}: \theta \in \Theta\right\}$ - family of distributions We test $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ such that $\Theta_{0} \cap \Theta_{1}=\varnothing$
with two tests with critical regions C_{1} and C_{2}; both at significance level α.
The test with the critical region C_{1} is more powerful than the test with critical region C_{2}, if

$$
\begin{aligned}
& \forall \theta \in \Theta_{1}: P_{\theta}\left(C_{1}\right) \geq P_{\theta}\left(C_{2}\right) \\
& \text { and } \exists \theta_{1} \in \Theta_{1}: P_{\theta_{1}}\left(C_{1}\right)>P_{\theta_{1}}\left(C_{2}\right)
\end{aligned}
$$

Uniformly most powerful test

For given $H_{0}: \theta \in \Theta_{0}$ and $H_{1}: \theta \in \Theta_{1}$:
δ^{*} is a uniformly most powerful test (UMPT) at significance level α, if

1) δ^{*} is a test at significance level α,
2) for any test δ at significance level α, we have, for any $\theta \in \Theta_{1}$:

$$
P_{\theta}\left(\delta^{*}(X)=1\right) \geq P_{\theta}(\delta(X)=1)
$$

i.e. the power of the test δ^{*} is not smaller than the power of any other test of the same hypotheses, for any $\theta \in \Theta_{1}$
if Θ_{1} has one element, the word uniform is redundant

Uniformly most powerful test - alternative form

For given $H_{0}: \theta \in \Theta_{0}$ and $H_{1}: \theta \in \Theta_{1}$:
A test with critical region C^{*} is a uniformly most powerful test (UMPT) at significance level α, if

1) The test with critical region C^{*} is a test at significance level α, i.e.

$$
\text { for any } \theta \in \Theta_{0}: P_{\theta}\left(C^{*}\right) \leq \alpha,
$$

2) for any test with critical region C at significance level α, we have for any $\theta \in \Theta_{1}$:

$$
P_{\theta}\left(C^{*}\right) \geq P_{\theta}(C)
$$

Testing simple hypotheses

We observe X. We want to test

$$
H_{0}: \theta=\theta_{0} \text { against } H_{1}: \theta=\theta_{1} .
$$

(two simple hypotheses)
We can write it as:

$$
H_{0}: X \sim f_{0} \text { against } H_{1}: X \sim f_{1}
$$

where f_{0} and f_{1} are densities of distributions defined by θ_{0} and θ_{1} (i.e. P_{0} and P_{1})

Likelihood ratio test for simple hypotheses. Neyman-Pearson Lemma

Let $\quad C^{*}=\left\{x \in X: \frac{f_{1}(x)}{f_{0}(x)}>c\right\}$
such that $\quad P_{0}\left(C^{*}\right)=\alpha$ and $P_{1}\left(C^{*}\right)=1-\beta$
Then, for any $C \subseteq X$:
if $P_{0}(C) \leq \alpha$, then $P_{1}(\mathrm{C}) \leq 1-\beta$.
(i.e.: the test with critical region C^{*} is the most powerful test for testing H_{0} against H_{1})
In many cases, it is easier to write the test as

$$
C^{*}=\left\{x: \ln f_{1}(x)-\ln f_{0}(x)>c_{1}\right\}
$$

Likelihood ratio test: we compare the likelihood ratio to a constant; if it is bad we reject H_{0}

Neyman-Pearson Lemma - Example 1

Normal model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right), \sigma^{2}$ is known
The most powerful test for

$$
H_{0}: \mu=0 \text { against } H_{1}: \mu=1 . \longleftrightarrow \mu_{0}<\mu_{1}
$$

At significance level α :

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \bar{X}>^{u_{1-\alpha} \sigma} / \sqrt{n}\right\}
$$

For obs. 1.37; $0.21 ; 0.33 ;-0.45 ; 1.33 ; 0.85 ; 1.78 ; 1.21 ; 0.72$ from $\mathrm{N}(\mu, 1)$ we have, for $\alpha=0.05$:

$$
\bar{X} \approx 0.82>1.645 \cdot 1 / \sqrt{9} \approx 0.54
$$

\rightarrow we reject H_{0}

Neyman-Pearson Lemma - Example 1 cont.

Power of the test

$$
\begin{aligned}
P_{1}\left(C^{*}\right) & =P(\bar{X}>1.645 \sigma / \sqrt{n} \mid \mu=1)=\ldots \\
& =1-\Phi\left(1.645-\mu_{1} \cdot \sqrt{n} / \sigma\right) \quad \approx 0.91
\end{aligned}
$$

If we change α, μ_{1}, n - the power of the test....

Neyman-Pearson Lemma: Generalization of example 1

The same test is UMP for $H_{1}: \mu>0$ and for

$$
H_{0}: \mu \leq 0 \text { against } H_{1}: \mu>0
$$

more generally: under additional assumptions about the family of distributions, the same test is UMP for testing

$$
H_{0}: \mu \leq \mu_{0} \text { against } H_{1}: \mu>\mu_{0}
$$

Note the change of direction in the inequality when testing

$$
H_{0}: \mu \geq \mu_{0} \text { against } H_{1}: \mu<\mu_{0}
$$

Neyman-Pearson Lemma - Example 2

Exponential model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from an $\exp (\lambda)$ distribution, $n=10$. MP test for

$$
H_{0}: \lambda=1 / 2 \text { against } H_{1}: \lambda=1 / 4 .
$$

At significance level $\alpha=0.05$:

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}>31.41\right\}
$$

E.g. for a sample: 2; $0.9 ; 1.7 ; 3.5 ; 1.9 ; 2.1 ; 3.7 ; 2.5 ; 3.4 ; 2.8$: $\Sigma=24.5 \rightarrow$ no grounds for rejecting H_{0}.

$$
\Gamma(a, \lambda)+\Gamma(b, \lambda)=\Gamma(a+b, \lambda)
$$

$$
\Gamma(n / 2,1 / 2)=\chi^{2}(n)
$$

Neyman-Pearson Lemma - Example 2'

Exponential model: $X_{1}, X_{2}, \ldots, X_{n}$ are an IID sample from an $\exp (\lambda)$ distribution, $n=10$. MP test for

$$
H_{0}: \lambda=1 / 2 \text { against } H_{1}: \lambda=3 / 4
$$

At significance level $\alpha=0.05$:

$$
C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}<10.85\right\}
$$

E.g. for a sample: 2; $0.9 ; 1.7 ; 3.5 ; 1.9 ; 2.1 ; 3.7 ; 2.5 ; 3.4 ; 2.8$: $\Sigma=24.5 \rightarrow$ no grounds for rejecting H_{0}.

$$
\exp (\lambda)=\Gamma(1, \lambda) \quad \Gamma(a, \lambda)+\Gamma(b, \lambda)=\Gamma(a+b, \lambda) \quad \Gamma(n / 2,1 / 2)=\chi^{2}(n)
$$

Example 2 cont.

The test $C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}>31.41\right\}$
is UMP for $H_{0}: \lambda \geq 1 / 2$ against $H_{1}: \lambda<1 / 2$
The test $C^{*}=\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right): \sum x_{i}<10.85\right\}$
is UMP for $H_{0}: \lambda \leq 1 / 2$ against $H_{1}: \lambda>1 / 2$

2
Faculty of Economic Sciences

