Mathematical Statistics 2020/2021, Problem set 10 Hypothesis Testing

1. A new tulip species was grown. A null hypothesis that 60% of seedlings sprout is tested on the basis of the behavior of 6 seedlings.
(a) One researcher tests the null hypothesis against the alternative that more than 60% seedlings sprout. He rejects the null if at least 5 seedlings sprout. Is the size of this test less than 0.05 ?
(b) What is the size of a test performed by a different researcher, who tests the same hypotheses but rejecting the null when all seedlings sprout?
(c) A third researcher tests the null against the alternative that the fraction of seedlings that sprout is different than 60%. Propose a critical region for this researcher for a level of significance of $\alpha=0.06$ or less.
2. We toss a coin 10 times. We test the null hypothesis that $p=0.5$ against the alternative that $p>0.5$. Suppose we get 8 heads. What is the p-value of this result? Would we reject the null for a significance level of $\alpha=0.1$? And for $\alpha=0.05$? What would be the p-value, if we tested against the alternative that $p \neq 0.5$?
3. An experiment is successful with probability p. In order to verify a null hypothesis that $p=0.5$, against the alternative that $p=0.6$, we conduct 144 experiments. We reject the null hypothesis if the number of successes is more than 80 . Find the significance level of the test. Find the power of the test.
4. A population may be described by a distribution with density $f(x)=\lambda e^{-\lambda x}$ for $x>0$. We verify the null hypothesis that $\lambda=2$ against the alternative that $\lambda=\frac{1}{4}$ with the use of a single observation: if the observation is larger than c, we reject the null hypothesis. Find c such that the significance level $\alpha=0.01$ and find the power of the test. Would the results change if the alternate hypothesis stated that $\lambda=\frac{1}{10}$?
5. A population may be described by a distribution with density $f(x)=(\theta+1) x^{\theta}$ for $0<x<1$. We test the null hypothesis that $\theta=1$ against the alternative that $\theta=2$. We conclude on the basis of a single observation: if the result is greater than 0.8 , we reject the null. Calculate the probabilities of error of first and second kind. What is the power of the test equal to?
6. Which type of error (1st or 2 nd) is the main criterion in the following cases:
(a) A potential criminal is deemed not guilty unless is proven guilty beyond reasonable doubt;
(b) NASA tests a component to be included in a space ship.
